“圆柱体体积的计算”教学设计及思考

2024-07-13 版权声明 我要投稿

“圆柱体体积的计算”教学设计及思考(通用12篇)

“圆柱体体积的计算”教学设计及思考 篇1

苏教版《九年义务教育六年制小学教科书数学》(第十二册)第8-9页圆柱体积公式的推导、例4,“练一练”及补充习题。教学目标:

1、知识技能

结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、过程方法

让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、情感态度价值观

通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。教学重点:

掌握和运用圆柱体积计算公式 教学难点:

圆柱体积公式的推导过程 教学过程:

一、情境引入(材料:长方体、正方体积木)

1、昨晚,老师去拜访了一位同学,他现在是某玩具厂厂长,他们厂新近开发了一种积木玩具,正准备上网宣传。他委托我在同学们中搞一个调研,问问你们想从网上了解这种产品的哪些信息呢?

(制作材料,使用方法,注意事项,大小规格等)

2、小组长从1号材料袋中取出长方体和正方体积木,让小组学生采集有关数据,并分别口算出它们的体积。

学生代表汇报,并说说是怎样的?根据的是什么? 师:长方体、正方体的体积都可以怎样来计算?

(板书:长方体的体积=底面积×高)

二、自主探究(材料:圆柱体积木、圆柱体插拼教学具、课件)

1、教师出示一个圆柱体积木,这个玩具的体积你们会算吗?

2、提示:

(1)以前学过的长方体和正方体的体积,对我们研究圆柱体体积有帮助吗?(2)你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积怎样计算吗?

3、小组合作交流:怎样将圆柱体转化成一个长方体呢?

4、小组代表汇报

(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

5、演示操作

(1)请一名学生演示用切插拼的方法把圆柱体转化成长方体。其他学生模仿操作。(2)这是一个标准的长方体吗?为什么?如果分割得份数越多,你会有什么发现?(3)电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)

6、组织讨论

(1)圆柱体转化成一个长方体后,什么变了,什么没有变?你有什么发现?(2)根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积×高

圆柱的体积=底面积×高

(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

追问:圆柱体的体积计算公式我们是怎样推导出来的?

7、小结:

要想求出一个圆柱的体积,需要知道什么条件?

8、学生自学第8页例4上面的一段话:用字母表示公式。学生反馈自学情况:

v=sh

三、巩固发展(材料:圆柱体、球体积木、直尺、半径4厘米的带水的量杯、实物展示台、计算器等)

1、出示第8页例4,学生理解题意,独立完成。

集体订正,说一说这样列式的根据是什么?

2、完成第9页的“试一试”。

集体订正,说一说圆柱体的体积还可以怎样算?

3、完成第9页“练一练”中的两道题(只列式,不计算)。

4、把2号材料袋中的直尺绕着它的一条边旋转一圈得到了一个什么图形?它的体积你会计算吗?(此题结论不唯一)

5、各小组打开3号材料袋,先采集数据然后计算圆柱体积木的体积。(可采集底面半径、直径和周长来分别计算)

6、这是一个球体积木,利用今天学的知识,你有办法算出它的体积吗?(把球体积木放进盛着水的量杯中,把测量球的体积转化为测量圆柱的体积)

(以上题目借助计算器计算)

四、全课小结

这节课你学会了什么?你是怎样学会的?

师:我也代表那位厂长谢谢同学们,他们厂一定会设计出更多更好玩的玩具奉献给同学们。

设计思考:

(一)让学生在现实情境中体验和理解数学

《课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,先复习了长方体、正方体体积的计算,然后顺势提出“如何计算圆柱体的体积”这一全课的核心问题,从而引发学生的猜测、操作、交流等数学活动,使学生经历了“做数学”的过程。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。在体验“生活数学”的过程中,学生理解与感受到了数学的魅力,获得了个人生存与发展的必需的数学。

(二)鼓励学生独立思考,引导学生自主探索、合作交流

数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动之中。在本节课中,我让全班学生以小组为单位围坐在一起,为他们提供自主探究的空间,同时尽量延长小组交流的时间,试图把学习的时间、空间还给学生,让其进行自主探究、合作交流。数学的价值不在技能而在思想,在探究的过程中,我不是安排了一整套指令让学生进行程序操作,获得一点基本技能,而是提供了相关知识背景、实验素材,使用了“对我们有帮助吗?”“你有什么发现?”“你是怎样想的?”等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学,而不是去模仿复制别人的数学。因为我想:自己的,才是有价值的。

(三)鼓励解决问题策略的多样化

“圆柱体体积的计算”教学设计及思考 篇2

片断一地点:多媒体教室

多媒体出示:长方体、正方体和圆柱体的底面积都相等, 高也相等。

师:猜猜看, 圆柱体的体积与长方体、正方体的体积相等吗?如果相等, 用什么方法验证?

生:我想, 能不能也用转化的策略, 将圆柱体转化成长方体或正方体呢?

生:平面图形圆可以转化成长方形计算面积, 圆柱可能也可以转化成长方体计算体积。

师:同学们的想法很对, 那么如何用转化体积的策略来解决圆柱体呢?请你们以小组为单位, 展开讨论。 (师巡视其间并参与讨论)

各小组纷纷举手。

生:我们组认为圆柱的两个底面是完全相同的两个圆, 把对应的两个圆平均分成相等的等分, 然后再拼一拼, 就拼成一个近似的长方体了, 因为圆平均分成若干等份可以拼成一个长方形。

师:其他小组还有不同拼法吗?

生:我们都赞同。

……

反思:

让学生自主推导圆柱体的体积计算方法是本节课的重点也是难点, 为了达到这节课的教学目标, 我选择了利用多媒体动态演示转化过程, 用以取代学生动手操作的过程。认为利用动态的圆柱切开, 再拼成一个近似的长方体, 长方体的体积就是圆柱体的体积, 学生只需看一看多媒体动态演示转化过程就能一目了然。审视整个教学过程, 并没有什么不妥, 谁知在课后的灵活运用知识练习当中, 学生是一错再错。我又不得不重新利用一堂综合实践课让同学们亲身实践, 再次体验圆柱体转化成近似的长方体的过程, 学生才真正理解掌握了。看来在教学中, 必须重视让学生动手操作, 主动参与, 借助操作启发思维, 使学生由被动接受知识转化为主动获取知识。教师在教学过程中“越俎代庖”的教学思想是不可取的。

片断二地点:教室

……

同样通过学生讨论得到:将圆柱体的底面积平均分成若干等分, 然后切开再拼摆, 这样可以得到一个近似的长方体。

师:同学们的猜想正确吗? (老师随机发给每个小组已将圆柱体的底面积平均分成16份的圆柱体模型。) 请同学们将手中的圆柱体展开再拼一拼。

生: (高高举起拼成的近似长方体) 真的拼成了长方体。

师:仔细观察并比较, 拼成的长方体与原来的圆柱体有什么联系, 在小组内交流。

生:长方体的底面积等于圆柱体的底面积, 长方体的高等于圆柱体的高。

生:长方体的体积等于圆柱体的体积。

生: (迫不及待地) 我们组还发现, 它们的体积没变, 而表面积增加了。

师: (故作惊讶地) 表面积增加了?在哪?

生:用手摸了摸, 增加了长方体的左、右两个侧面。 (其他小组都点头赞同)

生:我们组也发现了, 这个长方体的宽就是圆柱体底面的半径 (同时用手指) 。

受到这个小组的启发, 其他小组也争先恐后地举手, 纷纷要发表看法。

生:我们组发现, 这个长方体的长就是圆柱体底面周长的一半。

生:长方体的前面或后面的面积就是圆柱侧面积的一半。

……

反思:

整个教学过程, 学生由饶有兴趣地直观操作到后来的急于探索奥妙, 每一次新的发现都令学生兴奋不已, 充分品尝到了学习的快乐。这样, 学生在课堂上轻松、愉快地掌握了所学知识, 而且提出了课本上没有的独特见解。

《数学课程标准》强调:“自主探究, 动手操作, 合作交流是学生学习数学的主要方式。作为教师, 要为学生提供各种操作、发现的机会, 让他们在做数学的过程中建构知识。”可以想像, 作为形象思维占主导的小学生, 仅凭他们的想像、推理是难以真正体会出“分的份数越多越接近一个长方体”的抽象概念的, 这种认识唯有自己在亲自体验拼摆的整个过程中才能悟出。我认为, 此时的操作有效性才是更加深层次的有效, 也是我们在追求数学有效性过程中应着力倡导的。

通过这两节课的教学, 我获得了以下启示:

启示一:多媒体演示是提高学生动手操作有效性的辅助手段, 动手操作才是让学生获取知识并转化为能力的更为有效的方法。在教学过程中, 我们必须正视的是多媒体辅助教学也存在局限性, 教学过程中它不能替代学生观察实物, 不能替代学生的动手操作, 更不能替代学生的思维, 教师切不可运用了多媒体而搁置了学生的双手, 降低了教学效率。

《圆柱的体积》教学设计及说课稿 篇3

教学内容: 人教版六年级下册36页-37页及练习八第1、2、3、4题。

教学目的:(1)知识技能:使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和实验操作的技能。

(2)数学思考:使学生能够通过经历观察,提出假设和验证得出结论,用实验的方法学习新知识。

(3)解决问题:在数学活动过程中发展学生的推理能力,渗透知识间可以相互转化的思想。

(4)情感态度:在数学活动中培养学生学习数学的兴趣,养成善于猜测的习惯,增强肯与动脑又实事求是的科学精神。

教学重点:圆柱体积计算公式的推导和运用。

教学难点:圆柱体积计算公式的推导。

学习方法:小组合作学习法、自主探究学习法。

教学方法:直观演示法、引导发现法。教学过程:

一、复习铺垫。

口答下面用字母表示的公式。

S长方形 = S正方形= S圆= v长方体 = v正方体=

二、探究新知。

1、出示装了水的圆柱容器:师:圆柱里面的水形成了什么形状?猜一猜这杯水的体积有多少?你有办法用过去所学习的方法求出这些水的体积吗?说说你完整的想法。是怎样转化的?

2、出示橡皮泥捏成的圆柱体。那你有办法求出这个圆柱体橡皮泥的体积吗?

3、出示圆柱体模型。问:那么我这个圆柱体体积可以怎么想办法求呢?

3、能否运用上面的方法,把圆柱的体积转化成我们学习过的形体,推导出计算圆柱的体积计算公式呢?

4、出示课题。(圆柱的体积)

三、圆柱体体积计算公式的推导。

1、教师出示一个圆柱体,如果想准确地计算出这个圆柱的体积,该怎样计算呢?

2、猜测一下

3、小组合作交流:怎样将圆柱体转化成一个长方体呢?

4、小组代表汇报

5、演示操作

6、组织讨论

(1)圆柱体转化成一个长方体后,什么变了,什么没有变?你有什么发现?(2)根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积×高 圆柱的体积=底面积×高(3)学生齐读圆柱的体积计算公式。

追问:圆柱体的体积计算公式我们是怎样推导出来的?

7、小结:要想求出一个圆柱的体积,需要知道什么条件?

8、学生自学第36页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

四、教学例4。

(1)例4:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

(2)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?谁愿意试一试?

(3)请一名同学板演,其余同学在作业本上做。

(4)板演的同学讲解自己的解题方法,说一说在做这道题的过程中遇到了什么问题,是怎样解决的?(5)这道题还有其他结果吗?

(6)教师归纳学生所用的解题方法。强调在解题的过程中要注意单位统一。

五、开放训练,拓展提升。

1、如果把“底面积是50平方厘米”改为“底面半径是5厘米”,该怎样求圆柱的体积?

2、如果再改为“底面周长是314厘米”怎样求圆柱的体积?

3、回应课始的估算,拿出引入时估算体积的圆柱。如果请你测量所需要的数据,你打算测哪些数据比较方便,底面积吗?算出这个茶杯装的水大约多少克。(1立方厘米水重1克。)

师:水是生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯这么多的水才能保证健康,并把自己对水的想法写下来,下节课我们再交流。

六、全课总结。

通过今天的学习你有哪些收获?

七、作业:

练习八的第1、2、3题。

《圆柱的体积》说课稿

一、说教材

1、教学内容:人教版九年义务教育六年制小学六年级数学课本下册第二单元第一小节的第四课时《圆柱的体积》。内容包括:(1)圆柱的体积计算公式的推导;(2)运用该计算公式计算圆柱的体积。

2、本课在教材中所处地位和作用:《圆柱的体积》是几何知识的综合运用,是本单元的教学重点,是学习圆锥体积的前奏。它以长方体体积公式为依托,将为今后学习复杂的几何形体知识打下扎实的基础,是后继学习的前提。

3、学情分析:新课标指出:“学生是学习的主体”。一节课上的成功与否,与学生已有的知识结构和认知水平有着密切的关系。本节课是在学生已经了解了圆柱体的特征和圆的面积计算公式的推导过程,掌握了长方体体积的计算方法的基础上进行教学的,学生已经具备“等积变形”的思想。结合本班学生的实际情况,我拟定了以下教学目标和教学重、难点。

4、教学目标:

(1)知识与技能:使学生理解和掌握圆柱体积的计算公式,会应用公式求圆柱的体积,培养学生初步的空间观念、逻辑推理能力和动手操作能力。

(2)过程与方法:通过小组合作、讨论交流的学习方式,渗透知识间可以互相转化的思想,能有条理地、清晰地阐述自己的观点。

(3)情感与态度:在数学活动中,让学生体验探索数学奥秘的过程,培养学生对学习数学的积极情感。

5、教学重点和难点:圆柱体积的计算在生活中应用广泛,因此我把圆柱的体积公式推导过程和应用做为本节课的教学重点;而圆柱的体积公式推导过程需要借助形体转换才能实现,学生在理解上会有一定的困难。所以,我把圆柱的体积公式推导过程作为本节课的教学难点。

二、说教法和学法

1、说教法

在大力倡导新课程的今天,教师既是意义建构的帮助者、促进者,同时又是知识的提供者,教师的作用从传统的传递知识的权威转变为学生学习的辅导者,成为学生的高效伙伴或合作者,因此,我在进行《圆柱的体积》教学时,结合本班学生求知欲高,动手能力强,思维活跃等特点,重视教师与学生,学生与学生之间的相互作用,让学生自主探索。因此,在教学中,我主要采用了“小组合作学习法”、“自主探究学习法”等。

2、说学法

本课重点掌握圆柱体积的计算公式,根据学生的具体情况,在学习过程中,我让学生通过自己的动手操作,主动参与获取知识的全过程,让学生用实验、观察、讨论、小组合作等方法,自主的获取知识,培养学生的动手、动脑、动口的能力,并引导学生把这些学习方法运用到以后的学习中去。

现代教育理论认为:课堂教学是师生之间、学生之间交往互动与共同发展的过程,学生是学习的主人,教师是数学活动的组织者、引导者与合作者,教师的教要服从于学生的学。

教法与学法相互辉映,相得益彰是一节课顺利进行和取得成功的重要因素。为了突出重点,突破难点,我根据学生已有的知识水平和认知规律,在教法和学法上拟体现以下几个特点。

1、把小组合作学习作为主要的学习方式,充分发挥直观演示教学在知识形成和应用中的积极作用,让学生的能力在小组合作交流中不断得到发展,2、让学生运用观察、比较、思考、操作、讨论、推理等方法,把知识转化成相应的技能,从而提高灵活运用知识的能力。

3、充分发挥教师的主导作用和学生的主体作用,既面向全体,又注重对个体的帮助,有目的、有层次地扩展学生的思维,从而达到掌握新知和发展能力的目的。

三.教学程序设计:课堂教学是学生获得知识、形成技能技巧、发展智力能力以及养成良好品德的主要途径。为了实现教学目标,我根据儿童由感性到理性、由具体到抽象的认知规律,遵循目标性、整体性、启发性、主体性等教学原则,对整个教学过程进行了系统地规划,设计了五个主要的教学环节:

(一)复习旧知,做好铺垫。

(二)探究设疑,导入新课。

(三)演示推导,实际应用。

(四)综合练习,拓展思维。

(五)小结提升,促进内化。

三、说教学过程

(一)复习旧知,做好铺垫。

口答下面用字母表示的公式。

S圆= S长方体 = S正方体= v长方体 = v正方体=

(二)探究设疑,导入新课。

1、出示装了水的圆柱容器:师:圆柱里面的水是形成了什么形状?(圆柱)你有办法用过去过去所学习的方法求出这些水的体积吗?师:说说你完整的想法。是怎样转化的?

2、出示橡皮泥捏成的圆柱体。那你有办法求出这个圆柱体橡皮泥的体积吗?

3、出示圆柱体模型。问:那么我这个圆柱体体积可以怎么想办法求呢?生讨论,随后,以“如何计算出圆柱的体积”的问题,激发学生的学习积极性和探究兴趣,从而自然导入新课。

(三)演示推导,实际应用。

1、圆柱体积公式的推导

(1)演示操作、分组讨论

(2)抽象概括,推导公式。讨论完毕后,让每个组选一个代表汇报讨论结果,并演示出操作过程。然后,教师用教具演示圆柱形体转化前后的内在联系,并启发学生在小组内有条理地表述圆柱体积计算公式的推导过程。最后,安排让学生质疑问难。(这一环节的教学,让学生在动手、动脑、动口的活动中获取、内化新知,体现了我在教法与学法上的设计特点,使过程与方法目标得到实现。)

2、圆柱体积计算公式应用

教学例4:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?(由于学生已有了应用公式计算长方体体积的基础,所以,本环节我只引导学生回忆计算物体体积时应注意的事项,比如:(1)单位要统一(2)要用体积单位,等等。(3)算法多样化。然后放手让学生独立完成,再集体订正。这样既充分调动学生学习的积极性和主动性,又培养了学生的自主学习能力,也注重体现了知识与技能目标。

(四)、综合练习,拓展思维。

1、如果把“底面积是50平方厘米”改为“底面半径是5厘米”,该怎样求圆柱的体积?

2、如果再改为“底面周长是314厘米”怎样求圆柱的体积?

3、回应课始的估算,拿出引入时估算体积的圆柱。如果请你测量所需要的数据,你打算测哪些数据比较方便,底面积吗?算出这个茶杯大约可以装水多少克。(1立方厘米水重1克。)

师:水是生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯这么多的水才能保证健康,并把自己对水的想法写下来,下节课我们再交流。

4、先测量后计算小组协作。并说说是怎样测量的?又是如何计算的?综合练习。这是一个开放的设计,通过量“相关的数据”来解决实际问题;既培养了学生的动手操作能力;也将数学知识和学生的生活实际结合起来,使学生明白了所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生学习数学的积极情感。深化了情感与态度教学目标。)(这4个练习题的设计,由浅到深、环环相扣,不断在深度和广度上加以扩展,发展了学生思维的灵活性。)

(五)、小结提升,促进内化。

让学生说说学习本节课的收获?强调说的内容既可以是学习新知识方面的,也可以是情感、态度方面的。教师给予中肯的评价。这种开放式的问题设计,既培养了学生的反思能力,又发展了学生学习数学的积极情感。

圆柱体体积教学设计 篇4

陶营镇中心小学

刘交宾

教学内容:苏教版十二册圆柱的体积 设计理念:

兴趣是学生学习的动力,创设有趣的情境可以激发学生的学习兴趣。所以,在本节课教学中,我以一杯水引入,先让学生想想用以前学过的知识可以怎么计算水杯中水的体积,再引出问题:如果要求压路机或是圆柱形柱子的体积,还能用刚才那样的方法吗?怎样求它们的体积呢?问题的提出和学生的生活实际紧密相连,激发了学生的学习兴趣,从而体现了数学的价值观。教材重视类比、转化思想的渗透,在教学圆柱体积公式的推导时,引导学生经历“转化图形——建立联系——推导公式”的探索过程,使学生掌握圆柱体积的计算方法,并在此基础上感悟到直柱体体积的一般计算方法。

教学目标

1.理解圆柱体体积公式的推导过程,掌握计算公式.

2.使学生会运用公式计算圆柱的体积,并能解决一些实际问题。

3、通过公式的推导,培养同学们的分析推理能力,向同学们渗透转化思想;

4、使同学们感悟到人民的卓越智慧,感悟数学知识的魅力,提高审美意识 教学重点

圆柱体体积的计算. 教学难点

理解圆柱体体积公式的推导过程. 教学准备:

多媒体课件,圆柱体教具模型 教学过程

一、复习预备

(一)教师提问

1.什么叫体积?怎样求长方体的体积? 2.圆的面积公式是什么?

3.圆的面积公式是怎样推导的?

(二)谈话导入

同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)

二、新课教学

(一)教学圆柱体的体积公式.

1.教师演示

把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体. 2.启发学生思考、讨论:

(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?

①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.

②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.

③近似长方体的高就是圆柱的高,没有变化. 4.学生根据圆的面积公式推导过程,进行猜想.

(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样? 5.启发学生说出通过以上的观察,发现了什么?

(1)平均分的份数越多,拼起来的形体越近似于长方体.

(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体. 6.推导圆柱的体积公式

(1)学生分组讨论:圆柱体的体积怎样计算?

(2)学生汇报讨论结果,并说明理由. 因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)

(1)已知圆柱的底面半径和高,怎样求圆柱的体积?

(2)已知圆柱的底面直径和高,怎样求圆柱的体积?(3)已知圆柱的底面周长和高,怎样求圆柱的体积?

三、巩固反馈,解决问题 只列式,不计算。

① 底面积12平方分米,高6分米。② 底面半径3厘米,高7厘米。③ 底面直径6米,高8米。

④ 底面周长314毫米,高20毫米。.

四、拓展探究,知识延伸 总结所有直柱体的体积公式,理解所有直柱体的体积都可用底面积乘高来计算。

五、畅所欲言,总结收获

1、谈谈这节课你有哪些收获。

2、解题时需要注意哪些方面

《圆柱的体积》教学反思

教学反思:

一,摆脱情境困扰,追求简单高效

圆柱的体积教学是小学几何知识的重头戏。教学这节课时,我首先搜集了大量课例,想寻找一些灵感来装饰这节课的开头——创设怎样的情境才能新颖又能

够为整节课的教学服务呢?想了好几套方案最后还是采用谈话法引出直柱体,再从直柱体牵出圆柱体,由此带出圆柱的体积。板书“圆柱的体积”,课本是先让学生回忆“长方体,正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢 ”让学生们猜一猜,猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳.我认为,首先应复习一下圆面积计算公式的推导过程,这样有助于学生猜想,接着在回忆了长方体,正方体体积计算方法之后,再接着探究.这样由平面图形到立体图形,过度自然,流畅,便于学生的思维走向正确方向,这时教师的引导才是行之有效的。

二, 建立切拼表象,渗透极限思想

学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受"把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。但我使用了课件——把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体 ,展示切拼过程。学生虽然没有亲身经历,但也一目了然。

三, 练习层层递进,弱化繁琐计算

为了让学生能熟练地掌握计算圆柱的体积,在设计练习时要多动脑花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出四种类型:

1.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。2.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr h。3.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)h。

4.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)h。

圆柱的体积教学设计 篇5

课题:《圆柱的体积》

教学目标:

1.过程与方法:通过切割、拼合的方法,借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程。.知识与技能:学生能应用圆柱体积公式进行圆柱体积的计算。

3.情感态度与价值观:在探索圆柱体积过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。教学重难点:

1.圆柱体积公式的推导及应用。2.圆柱体积公式的推导过程。

课前准备:多媒体课件、实物投影、圆柱体。教学过程

一、创设情境、激趣导入

教师故事引入:圆柱形状的“转笔刀”和“浆糊笔”迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,“转笔刀”很自信地说:“看我这么胖,肯定是我的体积大!”“浆糊笔”很不服气地说:“我比你高多了,一定是我的体积大!”就这样你一言我一语,争论了很久还没个结果。

提问:小组讨论寻找解决这两个圆柱体积大小的方法。

1、学生小组讨论解决的方法。

2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。

通过情景的创设,激发学生的学习热情,让他们发现问题,并通过讨论找出解决的方法,使学生从被动学习变为主动学习,学生对这节课的学习也从宏观上得到了解。学生解决问题的方法有出人意料的回答,老师根据情况,给予恰当的鼓励性的评价,以激发学生的思维。

二、引导探究、自主建构

(一)回顾旧知

1、启发学生:我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?让学生回忆,说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

(二)圆柱体积公式的推导

1、猜想:能否把圆柱转化成我们已经学过的图形来求出它的体积?

2、学生分组,利用手中的学具进行操作、研究并讨论以下问题:圆柱体拼成的是标准的长方体吗?拼成后什么变了,什么没变?

3、请同学演示并讲述转化过程。(生操作;把圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个近似的长方体。)

师引导:由于我们分的不够细,所以看起来不太像长方体,如等分的份数越多,拼成的立体图形就越接近于长方体。

课件演示:教师演示圆柱体转化成长方体的过程,并结合课件中提出的问题进一步强化学生的认知,从而,师生共同导出圆柱的体积公式及字母公式:圆柱体积=底面积*高 即V=Sh

4、师生导出圆柱的体积公式后,学生自学课本例题,并完成试一试。(通过利用资源、自能学习,让全体学生都能动脑、动口、动手参与到学习中去,使学生学会学习、学会协作,所学知识的理解更为深刻、透彻。)

圆柱体积公式的推导过程,学生会有不同的方法,如用课本的方法或用类比的方法,教师应给予恰当的评价。

三、强化训练、拓展应用

1、公式拓展。

在日常生活中,圆柱的底面积通常没有直接给出,那么我们通过什么条件也能求出圆柱的底面积呢?

2、教师小结:无论已知圆柱的底面半径、直径还是底面周长,我们都必须根据V=Sh,先求出圆柱的底面积,然后乘以高才能求出圆柱的体积。

3、质疑

1、学生可根据已学的“圆的面积”公式导出。

(当已知圆柱底面的半径时V=∏r2h、当已知直径时V=∏(d÷2)2h、当已知周长时,先求半径,再求底面积,然后求圆柱体积。

2、判断。并说明原因

(1)一个圆柱体的底面积是8平方厘米,高是6厘米,这个圆柱体的体积是48立方厘米。()

(2)一个圆柱的底面积是10平方米,高是10米,它的体积是100平方米。()

(3)一个圆柱体铁罐,底面直径是2米,高是3米,求它的体积。列式是:3.14×22×3()

1、根据生活实际,当知道圆柱底面半径、直径或周长时,怎样求圆柱的体积这个问题,可以让学生充分拓展思维,不要停留在只会死记公式、生搬硬套的低层次上。并大力鼓励、表扬爱动脑筋的同学

2、通过练习,学生对基本知识有一定的理解,教师也了解了学生对知识的掌握情况。

温馨提示:

提出练习要求:先做“巩固”练习,有余力的再做“提高”练习。回应开头,解决“浆糊笔”和“转笔刀”争论的问题。

1、赛车游戏:看谁跑得快。

(1)圆柱的底面积是15平方米,高是3米,体积是()立方米。

(2)已知圆柱的高是20厘米,底面积100平方厘米,圆柱的体积是()平方厘米。

(3)一个圆柱形的粮囤,从里面量底面半径是2米,高是2.5米。这个粮囤能装稻谷()立方米。

(4)一个圆柱的体积是80立方分米,底面积是16平方分米,它的高是()分米。

2、提高练习。考你智慧:看谁攀得高。

(1)一个圆柱,它的底面直径4厘米,高是3米,体积是()立方厘米。

(2)一个圆柱体铁架,它的底面周长是62.8分米,高是6分米,它的体积是()立方分米。

在计算过程中,学生会遇到不少问题,可通过师生交流或小组互相帮助解决,从而实现互帮、互学共同提高。

四、自主反思、深化体验

1、提出要求,学生谈收获。

2、总结本节情况。

谈收获,并作出自我评价。通过谈收获,体现学习的自主性,体验获得成功的乐趣。

板书设计: 圆柱的体积

长方体的体积=底面积*高

圆柱、圆锥有关计算的教学策略 篇6

一、操作观察, 发现结果

新课程强调以学生的发展为本。建构主义理论认为:“知识不是被动接受的, 而是由认知主体构建的。”荷兰著名的数学教育家弗赖登塔尔强调:“学习数学唯一的方法是实行‘再创造’, 也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务就是引导和帮助学生进行再创造, 而不是把现有的知识灌输给学生。”如, 在教学圆柱的侧面展开是什么图形时, 学生已经知道了圆柱的侧面是个曲面, 我让学生先想一想圆柱的侧面展开图可能是什么形状?再请学生拿出圆柱模型、剪刀、尺子等学具, 把圆柱的侧面展开, 观察它的形状。圆柱的侧面通过学生剪开后展开成为一个长方形或正方形、平行四边形。如学生沿着圆柱的高剪开, 展开后得到的是一个长方形, 理解了这个长方形的长和宽与原来圆柱的底面周长与高之间的关系, 培养了学生善于观察, 勇于探索的学习品质。

二、对比方法, 优化计算

有关圆柱体表面积、侧面积、体积和圆锥体体积知识的计算, 出错率很高。因为有“3.14”这个小数参与计算, 计算量较大, 计算时难免出错。是否能找到一种更好的计算方法呢?我尝试着让学生用两种方法列式计算:一种方法是让圆周率π直接参与列式并计算, 到最后一步再把“3.14”代入计算;另一种方法是用π的近似值3.14参加列式, 按运算顺序逐步计算。如一个圆柱的底面直径是3厘米, 高是5厘米, 求这个圆柱的表面积。

用第一种方法列式解答具体的计算方法是:

用第二种方法列式解答, 逐步的计算方法是:

通过对比, 学生发现, 用第一种方法计算比较简便, 因为“3.14”参与计算的次数大为减少, 既提高了计算的准确率, 又为初中代数中的代入法用字母参与列式奠定了基础。

三、实验研究, 寻找答案

圆柱的体积 教学设计 篇7

评价样题:

学习流程:

一、创设现实情境,增强探究欲望。

1、出示橡皮泥做的圆柱体:怎样求出这个圆柱体橡皮泥的体积?你能想出几种办法?

如果要求(出示百家姓广场上的圆柱形大鼎底座图片)圆柱形大鼎底座的体积,还能用刚才那样的方法吗?那怎么办?(学生试说出自己的办法。)

看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,对吗?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、亲历建构过程,提高探索能力。

1、提出问题,大胆猜想

你能猜一猜圆柱的体积怎样计算吗?你觉得圆柱体积的大小和什么有关?

(鼓励学生大胆猜测,说出自己的想法)

2、回顾旧知,帮助迁移

同学们都很会大胆猜想,但还要小心地论证猜想的科学性。你还记得圆面积转化什么图形的面积来求它的公式的`吗?

(演示课件:圆转化成长方形)

3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

4、小组合作,验证猜想

下面请大家四人一组,借助手中的学具或用萝卜和土豆做成的圆柱分组进行探讨。

(出示合作提纲)小组长做好分工,并完成记录表。

活动记录表

思考:

1、圆柱体可以转化成哪种立体图形?

2、两种立体图形之间有怎样的联系?你们发现了什么?得出了什么结论?

3、怎样用简捷的形式表示你推导出来的公式呢?

活动过程:

1、我们用方法,把圆柱体转化成了体。

2、在这个转化的过程中,变了,没有变。

3、通过观察比较,我们发现:把一个圆柱体的底面分成许多相等的扇形,然后切、拼,就能得到一个近似的长方体。这个长方体的底面积等于圆柱体的,高就是圆柱体的()。因为,长方体体积=(),所以,圆柱体的体积计算公式是v=()。

5、全班交流,展示评价。

评价交流中,借助评价样题。同时课件演示切拼的过程,同时演示将圆柱底面等分成32份、64份……,让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。 6、根据学生的发现引导学生推导出:

圆柱的体积=底面积×高,

用字母表示v = sh。

7、反馈练习。

(1)要求圆柱体积,必须知道哪些条件?

(2)出示例5,学生借助圆柱体积公式自主完成,并及时订正反馈。

圆柱的体积教学反思 篇8

本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我来谈谈自己的一些反思。

1、导入时,力求突破教材,有所创新

圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

2、新课时,要实现人人参与,主动学习

学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,因为学校没有提供学具,所以我只能先让学生展开空间想象,结合圆面积的推导过程,借助课件一一展示推导过程。让学生观察发现把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。

3、练习时,形式多样,层层递进

例题的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时考虑怎样才能让学生用最短的时间完成不同类型的题目。(1)、已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

(2)、已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。

(3)、已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。

(4)、已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。

(5)、已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。

因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法。另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。不足之处

圆柱的体积教学案例 篇9

单位:阳东区大沟镇中心小学

科目:数 学

姓名:陈贤很

时间:2017年6月

《圆柱的体积》教学案例

[教学内容/学生情况分析] 《圆柱的体积》是人教版六年级下册第三单元《圆柱和圆锥》中的一个内容,它包括圆柱体的体积计算公式的推导和运用公式计算圆柱的体积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体转化成已学过的立体图形,再通过观察、比较找出两个图形之间的关系,来推导出圆柱的体积计算公式。

《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。在此之前,学生已掌握了一定的几何知识与数学方法,部分学生思维活跃,数学成绩较好,加上“圆的面积公式”的推导的学习,辅以多媒体的教学,学生应该容易完成圆柱体体积计算公式的推导过程,为今后学习复杂的形体知识打下扎实的基础。[教学目的]

1、运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解其推导过程。

2、会用圆柱的体积计算公式计算圆柱形物体的体积或容积。

3、引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。

4、借助课件演示,培养学生抽象、概括的思维能力。[教学重难点] 圆柱体体积计算公式的推导过程 [设计理念及策略] “有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”即要求我们在教学中,要让学生通过自主的知识建构活动,学生的潜能得以开发,情感、态度、价值观得以培养,从而提高学生的数学素养。因此根据本节课内容的特点,这节课的教学将通过对圆柱体积知识的探究,重点培养学生探究数学知识的能力和方法。为了把“一切为了学生的发展”这一新的教学理念融入到了课堂教学之中。在课堂教学中将以学生的活动为主,让学生通过亲身体验、实际操作来找出数学知识之间的内在联系。在学生学习过程中,充分运用了教育资源中动画、声音、视频文件,并进行了有效地整合。本节课将使用以下策略:

1、利用迁移规律引入新课,借助远程资源为学生创设良好的学习情境。

2、以合作探究为主要的学习方式,充分发挥学生的自主性,体现学生的主体地位。

3、练习多样化,层次化。

4、引导学生把知识转化成相应的技能,从而提高灵活运用的能力,培养学生的综合素质。

[教学准备] 多媒体课件、圆柱体体积演示器 [教学过程]

一、创设情境

设疑导入

1、复习铺垫。

(1)求各园的面积:

A、半径3厘米

B、直径为4厘米

C、周长为62.8厘米(2)什么叫体积?长方体的体积怎样计算?

2、导入新课。

1、出示(资源)几组圆柱体实物图(同底等高、同底不等高、等高不等底),引导学生观察比较它们体积的大小。

激趣后让学生思考讨论:怎样计算圆柱的体积呢?能不能把圆柱也转化成我们已经学过的图形来求出它的体积?

2、指名说说自己想法。教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱的体积)

二、自主探究

学习新知

(一)探究推导圆柱的体积计算公式、教师演示(远程资源动画演示“圆柱体的体积”):

(1)屏幕上呈现一个圆柱体变为一个长方体(圆柱与长方体等底等高)的动画。提问:变化过程中,圆柱的什么变了(截面)?什么没有变(高、体积)?

(2)将圆柱的底面、长方体的底面闪烁后移出来。提问:你学过将圆变成长方形吗?(3)再次出示圆柱形物体,动画演示圆柱拼成近似长方体。让学生取出圆柱体学具拼成近似长方体。

2、学生利用学具独立操作(教师巡视、指导操作有困难的学生),思考并讨论。

(1)圆柱体切开后可以拼成一个什么图形?(近似的长方体)

(2)通过刚才的实验你发现了什么?① 拼成的近似长方体的体积与原来的圆柱体积有什么关系?② 拼成的近似长方体的底面积与原来圆柱的底面积有何关系?③ 拼成的近似长方体的高与原来的圆柱的高有什么关系?

(3)学生汇报交流。

3、让学生根据圆的面积公式推导过程,进行猜想。

如果把圆柱的底面平均分成32份或更多,拼成的长方体形状怎样?平均分成的份数越多,拼成的长方体形状会怎样?

4、推导圆柱的体积公式(利用远程资源动画演示推导过程)

(1)学生分组讨论、汇报:圆柱体的体积怎样计算?

(2)用字母表示圆柱的体积公式。学生口述后,教师板书。

因为 长方体的体积=底面积×高

所以 圆柱的体积 =底面积×高

V = S × h

5、引导学生进一步讨论后交流。

(1)要求圆柱的体积必须知道哪些条件?

(2)如果分别知道圆柱的底面半径、底面直径、底面周长,又怎样求圆柱的体积?

(二)、练一练

1、学生完成20页的[做一做]。

2、让学生想一想:如果已知圆柱底面的半径r和高h,怎样求圆柱的体积?(请学生自学并填写第44页第一自然段的空白部分)

(三)教学例6

1、引导学生默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?

2、指名说解题思路,讨论并归纳解题方法。

3、学生独立按讨论的方法完成例6。

4、教师评讲、总结方法。

三、练习巩固

应用拓展

(一)巩固练习

1、完成第21页的“练习三”第1、2题。(指名板演,其余同学在作业本上练习,完成后及时反馈练习中出现的错误,及时加以评讲。)

2、学生判断。(1)长方体、正方体、圆柱体的体积都可以用底面积乘高的方法来计算。()(2)圆柱体的底面积和体积成正比例。()(3)圆柱的体积和容积实际是一样的。()

(二)、拓展训练(课件出示拓展延伸题,学生课外练习)

一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?

四、总结延伸

通过本节课的学习,让学生谈谈本节课学后有什么收获?(根据学生回答教师总结延伸)

五、作业

练习三:第3、4、6题

[附:板书设计]

圆柱的体积

长方体的体积=底面积×高

圆柱的体积=底面积×高

V = S ×

h

[教学反思]

1、这节课是通过观察、猜想、操作验证、巩固、应用这几个环节来完成的。学生在最佳的情景中通过实践、探索、发现,得到了“活”的知识,学到有价值的数学。

2、操作验证是本节课的关键,为体现活动教学中学生“主动探索”的特点,我从问题入手,组织学生围绕观察猜想后展开验证性的操作活动。学生以活动小组为单位,思维活跃,积极探索,学习能力、抽象概括能力和逻辑思维能力得到了提高。

圆柱体积教学设计 篇10

南和县贾宋镇中心学校教师 李立强

一、课前系统部分

(一)、课标分析

《圆柱的体积》是冀教版六年级数学下册的内容,在课程标准中属于第二阶段(四-六年级)中第二个版块图形与几何中的教学内容,对《圆柱的体积》教学内容的要求是:结合具体情境,探索并掌握圆柱的体积的计算方法,并能解决简单的实际问题。

(二)、教材分析

《圆柱的体积》是冀教版六年级数学下册的内容,在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。

(三)、学生分析

六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

(四)、教学目标

知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

情感态度与价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

(五)、教学重难点:

1、教学重点:掌握圆柱体积的计算公式。

2、教学难点:圆柱体积计算公式的推导。

(六)、教学策略

介绍进行课堂教学所要采取的方法与技巧。实践探索、小组合作交流、演绎推理。

(七)、教学用具:电脑课件、圆柱体积演示器、正圆柱体。

二、课堂系统部分——教学过程

(一)、创设情境,引起猜想:

1、激发兴趣:圆柱体转化成近似长方体。

课件展示:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。)师:通过观察,同学们发现这两个物体都有什么是相同的?

生:体积、高。

(设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。)

师:揭示课题:圆柱的体积。

(二)、推导圆柱体积计算公式

师:怎样用我们已有的知识来计算圆柱的体积? 生:长方体的体积可以通过底面积乘高得到,我想圆柱的体积是不是也可以通过底面积乘高得到呢?

师课件展示:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。

我们把这相等的16块分成32块,64块,或更多,那么拼成的立体图形就

学生回答:就越接近于长方体了。

师课件展示:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。)

师:通过观察,你知道了什么?

生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

师课件展示:点击后出现:长方体的底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×215;高,V=Sh。

(三)、练一练:

1、师课件出示:一根圆柱形木料,底面积为75平方厘米,长90厘米。它的体积是多少?

生:完成后小组内交流。

2、师课件出示:判断题

一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

师:出示下面几种解答方案,让学生判断哪些是正确的。①50×2.1=105(立方厘米)

② 2.1米=210厘米,50×210=10500(立方厘米)③ 50平方厘米=0.5平方米,0.5×2.1=1.05(立方米)④ 50平方厘米=0.005平方米,0.005× 2.1=0.0105(立方米)

生:小组讨论,学生汇报并说出理由。

师:点击出现:“√”。

师小结:计算时既要分析条件和问题,还要注意要先统一计量单位。

(四)、两个圆柱体积计算公式的比较。

师课件展示:点击出现圆柱,再点击出现半径r、高h 如果已知圆柱底面半径r和高h,这样的圆柱的体积应该怎样计算呢? 师课件展示:点击出现V=πrh。师课件展示:点击出现V=Sh。

师:说说这两个体积计算公式之间有什么联系呢? 生可能回答:这两个体积计算公式中πr就是底面积S(设计意图说明:比较两个圆柱体积计算公式,明确两个体积公式之间的关系。)

小结:题目给了圆的半径,我们先算出圆柱的底面积,再算它的体积,如果题目给的是圆的直径呢?

生可能回答:我们仍然先算出圆柱的底面积,再算它的体积。

(五)、拓展训练 练习一:填表

师课件展示,生小组交流完成。练习二:计算圆柱的体积 师课件展示,生小组交流完成。

练习三:师课件展示:根据圆柱的体积公式计算 一个圆柱的体积是80cm3,底面积是16cm3。它的高是多少cm?

生小组交流完成。

(六)、小结

通过今天的学习,我们懂得,可以把圆柱转化为一个近似的长方体来计算它的体积。知道了圆柱的体积可以用V=Sh或者V=πrh来计算。

(七)、板书设计 圆柱的体积

圆柱的体积=底面积×高=Sh=πrh

三、课后系统部分——教学后记

《圆柱体积》教学反思 篇11

一、导入时,要突破教材,要有所创新

在进行圆柱的体积的导入时,课本上是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,那么再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜,《圆柱体积》教学反思。

猜想计算方法固然有好处,但要让学生马上做实验,理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。

二、新课时,要实现人人参与,主动学习

根据课标要求:学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围,教学反思《《圆柱体积》教学反思》。教学“圆柱的体积”时,示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份,还可以再多一些),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生如果没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。

三、练习时,要形式多样,层层递进

《圆柱体积》教学反思 篇12

今天教学“圆柱体的体积”。接受昨天学生提出的“只学不会的”学习方式,在黑板上分了两个区域,一个复习区域:长方体的体积怎样计算?圆的面积计算公式是怎样推导出来的呢?重点研究区域:圆柱体的体积怎样计算?

面对复习的问题,学生回答的很好,长方体的体积=长×宽×高,当我指着长方体的底面时,学生就说,长方体的体积=底面积×高。学生对于圆的面积计算公式的的推导记忆犹新,这是很值得我高兴的。面对本课的重点解决问题,我满怀信心(两个复习问题的铺垫,学生会首先想起来把圆柱体按照圆的面积推导过程一样,来等分圆柱体),开始引导学生独立思考,怎样计算圆柱体的体积?正当大家苦思冥想的时候,高迈把手举得高高的:老师,我想出来一种。又是他,每次回答问题总是第一个举手,把别人的“风头”都给抢去了,他是一个爱表现的学生,为了不影响其他学生思考,每次我总是“压一压”他的积极性。“给大家留一点思考的时间,等一会再说你的方法”,谁知道这个“积极分子”不容我把话说完,已经拿着自己的圆柱体跑到讲台上了,(哎,让我怎么评价他呢,耐不住性子啊,再稳重一些多好啊?),:我是这样想的,这是一个圆柱体的生日蛋糕,我想把它横着切成一个个圆片( ),分给你们吃。霎时间,下面的同学都笑了,过了一会,一个学生提问:切蛋糕,和圆柱体的体积有什么关系啊?“有啊,这个圆柱体蛋糕的体积就是每一个圆片的面积乘上圆片的个数。”这样解释完,下面的学生有的在笑,有的在议论,还有的再思考。我想想了,这是我该出手的时候了:“高迈, 给大家解释一下,圆片是什么?圆片的个数又是什么?”“圆片就是圆柱的底面积,圆片的个数就是圆柱的高”。话音刚落,掌声响了起来……。

这种推导圆柱体体积的计算方法,是出乎我意料之外的,因为,解决问题前,已经复习了长方体体积计算方法与圆的面积的推导方法,都是为“把圆柱体进行等分转化成长方体体积来推导”做铺垫的。谁曾向,这种用“堆”的过程来说明“底面积×高”计算圆柱体体积的道理,实际是“积分”思想,这是要到中学才学习的,学生不好理解的,竟然跑到“预想方法”之前了。真是“计划不如变化快啊”。课堂上的“精彩总是不期而至”啊。试想,如果,刚开始他举手,我就像以往一样“压一压他,让他和其他学生同步思考,说不定,这个想法在他脑海里转瞬即逝,那么这个精彩的火花就不会在课堂上呈现。由此感悟到,课堂上,要给学生即兴发言的机会,及时的捕捉学生的思维灵感,精彩就会不期而至。

上一篇:关于公共服务廉洁化工作总结下一篇:学校招生办法