等比数列的概念教案(共10篇)
无锡市第三高级中学钱燕芳
【教学目标】
知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。
能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。
情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。
【教学重点】
等比数列定义的归纳及运用。
【教学难点】
正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列
【教学手段】
多媒体辅助教学
【教学方法】
启发式和讨论式相结合,类比教学.【课前准备】
制作多媒体课件,准备一张白纸,游标卡尺。
【教学过程】
【导入】
复习回顾:等差数列的定义。
创设问题情境,三个实例激发学生学习兴趣。
1. 利用游标卡尺测量一张纸的厚度.得数列a,2a,4a,8a,16a,32a.(a>0)
2. 一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数
235列 15 ,15×0.9 ,15×0.9 ,15×0.9 ,…,15×0.9。
3. 复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.05,…,10000×1.05.学生探究三个数列的共同点,引出等比数列的定义。
【新课讲授】
由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。
等差数列:
一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示.数学表达式:an+1-an=d
等比数列:
一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示.数学表达式:an1
anq212
知晓定义的基础上,带领学生看书p29页,书上前面出现的关于等比数列的实
例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。
在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析.例题一
判断下列数列是否为等比数列?若是,找出公比;不是,请说明理由.
(1)1, 4, 16, 32.
(2)0, 2, 4, 6, 8.(3)1,-10,100,-1000,10000.
(4)81, 27, 9, 3, 1.(5)a, a, a, a, a.讲解例二,进一步熟悉定义,根据定义求数列未知项。最后的小例一为了由利
用定义的求解转到利用定义证明,二为了让学生发现等比数列隔项同号的规律。例题二
求出下列等比数列中的未知项:
(1)2, a, 8;
(2)-4, b, c, ½;
已知数列 2, x, d, y,8.是等比数列
①证明数列2, d, 8.仍是等比数列.
②求未知项d.通过两道例题的讲解,让学生有个缓冲,做个巩固练习。当然此练习的安排,也是为了进一步挖掘等比数列定义的本质,辨析找寻等差数列与等比数列的关系,将具体问题再推广到一般,并要求学生理解并掌握等比数列的判断证明方法。
练习
判断下列数列是等差数列还是等比数列?
(1)22 , 2 , 1 , 2-1, 2-2.4710(2)3 , 3 , 3, 3.引申:已知数列{an}是等差数列,而bn2an
证明数列{bn}是等比数列.由最后一例的证明,说明给出通项公式后可由定义判断该数列是否为等比数
列。反过来若数列已经是等比数列了,能否由定义导出数列通项公式呢?为下节课做铺垫。
【课堂小结】
由学生通过一堂课的学习,做个简单的归纳小结。
1理解.等比数列的定义,判断或证明数列是否为等比数列要用定义判断
2.等比数列公比q≠0,任意一项都不为零. 3.学习等比数列可以对照等差数列类比做研究.【作业】
1.书p48.No.1,2;
2.课课练课时6:7,8,9。.3.预习2.3.2
关键词:苏教版,高中数学,数列概念,认识
一、对教材的整体把握
整个教材的编写是有一定的知识框架与结构, 是为实现一定的教学目标的。章节与章节之间、课时与课时之间都有着紧凑的呼应关系, 是循序渐进, 缺一不可的。苏教版教材“入口浅、寓意深”, 通过大量的事例来引入数学课题, 这大大加深了学生对于知识的理解, 也激励他们解决实际问题, 实现了知识“从生活中来, 到生活中去”的原则。如果在“数列的概念”这章的教学活动中没有投入激情, 则会让学生在接下来的学习中丧失了应该具有的热情, 可以说是原动力不足。更何况, 对于数列的定义没有掌握透彻, 则会对整个知识框架缺乏整体的把握, 这也会对接下来的学习产生阻碍, 没有实现教学的连贯性和预期的教学效果。我们应该从整体着眼, 仔细钻研教材, 吃透每一章节。
二、教学过程的别出心裁
( 一) 从生活实例引入课题
“数列的概念”这一章节是从列举多个生活事例来引导学生思考, 激发学生已有的知识体系或生活体验, 来促使他们自己来归纳数列的定义。如先通过一个故事来计算出棋盘上应该放置的麦粒数, 然后把它们按照放置的先后排成一列数:1, 2, 22, 23, …, 263, ……;接下来引入细胞分裂的问题, 细胞由一个分裂成两个, 再由两个分裂成四个……以此类推23;再通过我们的无限小数 π 约到两小数、三位小数、四位小数…… 然后将它们的近似值排成一列数:3.14, 3.141, 3.1415, 3.14159, 3.141592, …… ;接着提出由于人们在1740 年发现了一颗彗星, 并推算出它每隔83 年出现一次, 如果从出现那次算起, 那么这颗彗星出现的年份分别是什么?通过计算可算出依次为1740, 1823, 1906, 1989, …;然后再由计算剧场如果第一排20 个座位、后一排比前一排多两个, 以此类推各排的座位数分别是:20, 22, 24, 26, …, 38;最后列举的事例则是说出从1984 年到近年, 我国运动健儿共参加六次奥运会, 获得金牌依次排列是:15, 5, 16, 16, 28, 32。组织学生观察这组数据后, 启发学生概括其特点, 最后由老师进行总结出数列的定义。
这种引入能激发学生的兴趣, 让学生在贴近实际生活中探求新知, 体会到数学是生动的, 是来源于生活的。
( 二) 通过图像和实际操作加深理解
在了解数列的定义之后, 为了更全面的了解数列, 需要将概念从直观到形式化。因此, 课本中将“Excle”“几何画板”等信息技术工具展现给学生。这与传统单一的教学手段有极大不同, 能将整个课堂氛围变得活跃起来。比如利用坐标轴让学生充分感受到数列中数的急剧变化。
( 三) 习题加以巩固
在教材中的习题设置了“练习”“感受·理解”“思考·运用”“探究·拓展”等栏目, 这些栏目设计是层层递进、循序渐进的, 因此这些题目是由基础到拔高的飞跃。
比如第33 页“练习”栏目的第二、三题是已知数列的通项公式, 求数列特殊项的值;第五题是已知数列的一些特殊项, 求数列的通项公式, 这些都是较为基础的题目, 提高学生的观察、归纳、概括能力。
“感受·理解”栏目的习题出题方式会更加灵活一些, 需要学生能够进行思考, 更能激发学生的探知欲。比如说“:156是不是数{n (n+2) }中的项?如果是, 那它是数列的第几项?”它就极大刺激学生的学习积极性。
“思考·运用”栏和“探究.拓展”栏对于学生的要求会更高一些, 要求学生从本质上去理解知识, 掌握它的精髓, 而不只是停留在概念性的理解上面, 而是能灵活多变、多角度与多层次的去钻研。
三、教学理念的深化
《普通高中数学课程标准》指出:“高中数学课程应该返璞归真, 努力揭示教学概念的发展过程和本质, 使学生理解数学概念逐步形成的过程, 体会蕴含其中的思想方法。”了解新课标, 认真钻研教材, 仔细揣摩教材在内容上分层次进行编排的特点, 设计出合理的教学目标。其实无论是后面章节中求数列的通项公式还是递推公式, 都是基于对数列概念的理解, 只是侧重点不同而已。因此, 要引起该有的重视。首先要吃透教材, 确定出教学过程之中的教学重难点;其次教师也应该充分考虑到学生的知识层次与接受能力, 设置出具有启发性又易于让学生接受的问题链, 引导学生积极主动思考;然后, 在教学过程中能随机应变, 引导学生建构完整的知识结构;最后, 丰富教学活动的形式, 采取多用的教学方式, 调动学生的积极性, 使其在轻松活跃的氛围之下, 掌握知识, 达到预期的教学目的。
总结
概念教学没有引起广大教师的重视这个局面亟需转变, 教师要有全局观, 宏观上, 对于教材的整个脉络结构、知识框架有清醒的认识;微观上, 对于每个章节都仔细的钻研, 体会编者的设计理念与用意。“数列的概念”这一小节是基石, 后面的知识内容都与它紧密相关。苏教版的编纂者也是别出心裁, 能够从生活实例中上升到数学理论知识, 并且这章节的栏目设计既新颖又符合学生的知识接受层次, 能“深入浅出”, 促使学生主动学习与探究。
参考文献
[1]殷伟康.基于函数观点的“数列的概念”教学实践与思考[J].中学数学, 2016, (1) :42-44
[2]廖碧.数列的概念与简单表示法[J].少儿科学周刊 (教育版) , 2014, (2) :12-12
[3]于洋.新课程下“数列概念”的教材比较研究[J].中学数学杂志 (高中版) , 2014, (6) :10-14
【关键词】苏教版;高中数学;数列概念;认识
一、对教材的整体把握
整个教材的编写是有一定的知识框架与结构,是为实现一定的教学目标的。章节与章节之间、课时与课时之间都有着紧凑的呼应关系,是循序渐进,缺一不可的。苏教版教材“入口浅、寓意深”,通过大量的事例来引入数学课题,这大大加深了学生对于知识的理解,也激励他们解决实际问题,实现了知识“从生活中来,到生活中去”的原则。如果在“数列的概念”这章的教学活动中没有投入激情,则会让学生在接下来的学习中丧失了应该具有的热情,可以说是原动力不足。更何况,对于数列的定义没有掌握透彻,则会对整个知识框架缺乏整体的把握,这也会对接下来的学习产生阻碍,没有实现教学的连贯性和预期的教学效果。我们应该从整体着眼,仔细钻研教材,吃透每一章节。
二、教学过程的别出心裁
(一)从生活实例引入课题
“数列的概念”这一章节是从列举多个生活事例来引导学生思考,激发学生已有的知识体系或生活体验,来促使他们自己来归纳数列的定义。如先通过一个故事来计算出棋盘上应该放置的麦粒数,然后把它们按照放置的先后排成一列数:1,2,22,23,…,263,……;接下来引入细胞分裂的问题,细胞由一个分裂成两个,再由两个分裂成四个……以此类推23;再通过我们的无限小数π约到两小数、三位小数、四位小数……然后将它们的近似值排成一列数:3.14,3.141,3.1415,3.14159,3.141592,……;接着提出由于人们在1740年发现了一颗彗星,并推算出它每隔83年出现一次,如果从出现那次算起,那么这颗彗星出现的年份分别是什么?通过计算可算出依次为1740,1823,1906,1989,…;然后再由计算剧场如果第一排20个座位、后一排比前一排多两个,以此类推各排的座位数分别是:20,22,24,26,…,38;最后列举的事例则是说出从1984年到近年,我国运动健儿共参加六次奥运会,获得金牌依次排列是:15,5,16,16,28,32。组织学生观察这组数据后,启发学生概括其特点,最后由老师进行总结出数列的定义。
这种引入能激发学生的兴趣,让学生在贴近实际生活中探求新知,体会到数学是生动的,是来源于生活的。
(二)通过图像和实际操作加深理解
在了解数列的定义之后,为了更全面的了解数列,需要将概念从直观到形式化。因此,课本中将“Excle”“几何画板”等信息技术工具展现给学生。这与传统单一的教学手段有极大不同,能将整个课堂氛围变得活跃起来。比如利用坐标轴让学生充分感受到数列中数的急剧变化。
(三)习题加以巩固
在教材中的习题设置了“练习”“感受·理解”“思考·运用”“探究·拓展”等栏目,这些栏目设计是层层递进、循序渐进的,因此这些题目是由基础到拔高的飞跃。
比如第33页“练习”栏目的第二、三题是已知数列的通项公式,求数列特殊项的值;第五题是已知数列的一些特殊项,求数列的通项公式,这些都是较为基础的题目,提高学生的观察、归纳、概括能力。
“感受·理解”栏目的习题出题方式会更加灵活一些,需要学生能够进行思考,更能激发学生的探知欲。比如说:“156是不是数{n(n+2)}中的项?如果是,那它是数列的第几项?”它就极大刺激学生的学习积极性。
“思考·运用”栏和“探究.拓展”栏对于学生的要求会更高一些,要求学生从本质上去理解知识,掌握它的精髓,而不只是停留在概念性的理解上面,而是能灵活多变、多角度与多层次的去钻研。
三、教学理念的深化
《普通高中数学课程标准》指出:“高中数学课程应该返璞归真,努力揭示教学概念的发展过程和本质,使学生理解数学概念逐步形成的过程,体会蕴含其中的思想方法。”了解新课标,认真钻研教材,仔细揣摩教材在内容上分层次进行编排的特点,设计出合理的教学目标。其实无论是后面章节中求数列的通项公式还是递推公式,都是基于对数列概念的理解,只是侧重点不同而已。因此,要引起该有的重视。首先要吃透教材,确定出教学过程之中的教学重难点;其次教师也应该充分考虑到学生的知识层次与接受能力,设置出具有启发性又易于让学生接受的问题链,引导学生积极主动思考;然后,在教学过程中能随机应变,引导学生建构完整的知识结构;最后,丰富教学活动的形式,采取多用的教学方式,调动学生的积极性,使其在轻松活跃的氛围之下,掌握知识,达到预期的教学目的。
总结
概念教学没有引起广大教师的重视这个局面亟需转变,教师要有全局观,宏观上,对于教材的整个脉络结构、知识框架有清醒的认识;微观上,对于每个章节都仔细的钻研,体会编者的设计理念与用意。“数列的概念”这一小节是基石,后面的知识内容都与它紧密相关。苏教版的编纂者也是别出心裁,能够从生活实例中上升到数学理论知识,并且这章节的栏目设计既新颖又符合学生的知识接受层次,能“深入浅出”,促使学生主动学习与探究。
【参考文献】
[1]殷伟康.基于函数观点的“数列的概念”教学实践与思考[J].中学数学,2016,(1):42-44
[2]廖碧.数列的概念与简单表示法[J].少儿科学周刊(教育版),2014,(2):12-12
[3]于洋.新课程下“数列概念”的教材比较研究[J].中学数学杂志(高中版),2014,(6):10-14
一、知识点
1.若数列从第二项起,每一项与它的前一项的差等于同一个常数,则数列{an}叫做等差数列,这个常数叫做公差。即anan1d,(n2,nN*)
2.等差数列的通项公式:ana1(n1)dam(nm)d
3.等差中项:若a,b,c成等差数列,则b称a与c的等差中项,且bac;a,b,c称等差数列是2
2bac的充要条件
二、练习
1.在等差数列{an}中,a7=9,a13=-2,则a25=()
A-22B-24C60D64
2.在等差数列{an}中,若a2+a6+a10+a14=20,则a8=()
A10B5C2.5D1.25
3.2005是数列7,13,19,25,31,中的第()项.A 332B 333C 334D 335
4.若数列an的通项公式为an2n5,则此数列是()
A 公差为2的等差数列B 公差为5的等差数列
C 首项为5的等差数列D 公差为n的等差数列
5.若a、b、cR,则“2bac”是“a、b、c成等差数列”的()
A 充分不必要条件B 必要不充分条件
C 充要条件D 既不充分也不必要条件
6.等差数列3,7,11,的一个通项公式为()
A 4n7B 4n7C 4n1D 4n1
7.等差数列an中,a350,a530,则a7
8.等差数列an中,a3a524,a23,则a69.已知等差数列an中,a2与a6的等差中项为5,a3与a7的等差中项为7,则an
10.已知数列{an}对于任意的正整数n都有an+1-an=-3, a1=3 , 则a81=.11.判断数52,2k7(kN)是否是等差数列an:5,3,1,1,12.在等差数列{an}中,(1)已知a14,d3,n15,求an;(2)已知a13,an31,d2求n;
一、教材分析
1.从在教材中的地位与作用来看
《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和是第三章“数列”第五节的内容,一方面它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习“数列的极限”等内容作准备。就知识的应用价值上来看,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。2.从学生认知角度来看
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。3.学情分析
教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,对问题的分析缺乏深刻性和严谨性。4.重点、难点
教学重点:公式的推导、公式的特点和公式的运用. 教学难点:公式的推导方法和公式的灵活运用.
公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。
二、目标分析
1.知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
2.过程与方法目标:通过公式的推导过程,培养学生猜想、分析、综合的思维能力,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。
3.情感态度与价值观:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。用数学的观点看问题,一些所谓不可理解的事就可以给出合理的解释,从而帮助我们用科学的态度认识世界。
三、教学方法与教学手段
本节课属于新授课型,主要利用计算机和实物投影等辅助教学,采用启发探究,合作学习,自主学习等的教学模式.四、教学过程分析
学生是认知的主体,也是教学活动的主体,设计教学过程必须遵循学生的认知规律,引导学生去经历知识的形成与发展过程,结合本节课的特点,我按照自主学习的教学模式来设计如下的教学过程,目的是在教学过程中促使学生自主学习,培养自主学习的习惯和意识,形成自主学习的能力。
1.创设情境,提出问题
在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大舍罕为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王觉得太容易了,就同意了他的要求。国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?大家想一下,这个国王能够满足宰相的要求吗?
【教师提问】
同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定. 2.学生探究,解决情境
263在肯定他们的思路后,我接着问:1,2,2,„,2是什么数列?有何特征? 应归结为什么数学问题呢?
探讨1:,记为(1)式,注意观察每一项的特征,有何联设s=1+2+22+23++26364系?(学生会发现,后一项都是前一项的2倍)
探讨2: 如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则2s64=2+22+23++263+264,记为(2)式.比较(1)(2)两式,你有什么发现? 有
【设计意图】留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是很显然的事,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而培养学生的辩证思维能力.
解决情境问题:经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两
s642641式相减,相同的项就可以消去了,得到:。老师强调指出:这就是错位相减法,并 2 要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?
【设计意图】经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了,让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心,同时也为推导一般等比数列前n项和提供了方法。3.类比联想,解决问题
这时我再顺势引导学生将结论一般化,设等比数列为an,公比为q,如何求它的前n项和?让学生自主完成,然后对个别学生进行指导。
一般等比数列前n项和:Sna1a2a3an1an?
即Sna1a1qa1q2a1qn2a1qn1?
方法1:错位相减法
2n2a1qn1Sna1a1qa1qa1q 23n1na1qqSna1qa1qa1qa1qa1(1qn)(1q)Sna1a1q1q这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?
na1(1qn)Sn1qna1q1
q1na1a1qn在学生推导完成之后,我再问:由(1q)Sna1a1q得Sn
1q【设计意图】在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。4.讨论交流,延伸拓展
探究等比数列前n项和公式,还有其它方法吗?我们知道, sn=a1+a1q+a1q2++a1qn-1=a1+q(a1+a1q++a1qn-2)那么我们能否利用这个关系而求出Sn呢? 方法2:提取公比q Sna1a1qa1q2a1qn2a1qn1 a1q(a1a1qa1qn2)a1q(Sna1qn1)(1q)Sna1a1qn
根据等比数列的定义又有呢?
方法3:利用等比定理
a2a3a4an=====q,能否联想到等比定理从而求出sna1a2a3an-13
aaa2a34nq a1a2a3an1a2a3anSa1qn(1q)Sna1anq
Saa1a2an1nn„„
【设计意图】以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围.以上两种方法都可以化归到Sna1qsn1, 这其实就是关于Sn的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用.领悟数学应用价值,从特殊到一般,从模仿到创新,有利于学生的知识迁移和能力提高。5.巩固提高,深化认识
(1)口答:
在公比为q的等比数列{an}中
若a12,q1,则Sn________,若a11,q1,则Sn________ 33若a1=—15,a4=96,求q及S4,若a31,S34(2)判断是非:
1(12n)①1248(2)
()12n23n1(12)②12222
()
12③若c0且c1,则
n1121,求a1及q.2cccc2462nc2[1(c2)n]1c()
【设计意图】对公式的再认识,剖析公式中的基本量及结构特征,识记公式,并加强计算能力的训练。
6.例题讲解,形成技能
例1.求和
1aaaa
1111例2.求等比数列,,的第5项到第10项的和.
24816方法1: 观察、发现:a5a6a10S10S4.
方法2: 此等比数列的连续项从第5项到第10项构成一个新的等比数列:首项为a516,公比为q2,项数为n6.
23n1111变式1:求11,2,3,4,5的前n项和. 248163212345变式2:求,,的前n项和.
2481632【设计意图】采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公 式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生自主学习的意识.解题时,以学生分析为主,教师适时给予点拨。7.总结归纳,加深理解
以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。
【设计意图】以此培养学生的口头表达能力,归纳概括能力。8.课后作业,分层练习
必做: P129练习3(1)习题3.5 第1题 选作: 思考题(1):求和 x+2x2+3x3++nxn.(2)画一个边长为2cm的正方形, 再将这个正方形各边的中点相连得到第2个正方形,依此类推,这样一共画了10个正方形, 求这10个正方形的面积的和。
【设计意图】布置弹性作业以使各个层次的学生都有所发展.让学有余力的学生有思考的空间,便于学生开展自主学习。
五、评价分析
本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式.错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实.学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性.同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能,在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质,形成学习能力。
六、教学设计说明 1.情境设置生活化.本着新课程的教学理念,考虑到高一学生的心理特点以及初、高中教学的衔接,让学生学生初步了解“数学来源于生活”,采用故事的形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生主动探究的欲望。2.问题探究活动化.
教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦.通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性。3.辨析质疑结构化.
在理解公式的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习.通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系。4.巩固提高梯度化.
例题通过公式的正用和逆用进一步提高学生运用知识的能力;由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的能力,培养学生思维的深刻性和灵活性。5.思路拓广数学化.
从整理知识提升到强化方法,由课内巩固延伸到课外思考,变“知识本位”为“学生本位”,使数学学习成为提高学生素质的有效途径。以生活中的实例作为思考,让学生认识到数学来源于生活并应用于生活,生活中处处有数学. 6.作业布置弹性化.
人教版小学数学教材六年级上册第107~108页例2及相关练习。
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1.教师:你知道等于多少吗?(学生:)
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?
学生出题。预设
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示1,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于1减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。
(2)继续演示,谁知道除了通分,还可以怎么算?
根据学生回答,板书。
(3)演示:那么计算就可以得到?()。
3.看到这儿,你发现什么规律了吗?
4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?
6.尝试练习
【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现
1.感受极限。
(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?
(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)
(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?
(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)
2.利用线段图直观感受相加之和等于1。
(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。
【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于1,到数形结合证明得数等于1的过程,激发学生学习兴趣,培养学生探索新知的精神。3.课堂小结。
对于这种借用图形来帮助我们解决问题的方法,你有什么感受?
教师小结:是的,数与形有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。
4.举一反三。
其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)
【设计意图】让学生体会数形结合是数学学习中常用的方法。
三、练习巩固
1.基础练习。
(1)学生独立计算。
(2)全班交流反馈。
【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。
2.小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?
解决问题
(1)全班读题,学生独立思考。
(2)指名回答。
(3)根据学生回答情况,连线(课件演示)。
(4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。
【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。
四、课堂总结
快下课了,请你来说说这节课有什么收获?
课后反思:
教 案
获嘉县第一中学
肖玉
等比数列的前n项和
教学目的:
1.掌握等比数列的前n项和公式及公式证明思路.
2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题 教学重点:等比数列的前n项和公式推导 教学难点:灵活应用公式解决有关问题 授课类型:新授课 课时安排:1课时
教 具:多媒体、实物投影仪
教材分析:
本节是对公式的教学,要充分揭示公式之间的内在联系,掌握与理解公式的来龙去脉,掌握公式的导出方法,理解公式的成立条件.也就是让学生对本课要学习的新知识有一个清晰的、完整的认识、忽视公式的推导和条件,直接记忆公式的结论是降低教学要求,违背教学规律的做法 教学过程:
一、复习引入:
首先回忆一下前两节课所学主要内容:
1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公
比;公比通常用字母q表示(q≠0),即:2.等比数列的通项公式:
an=q(q≠0)an1ana1qn1(a1q0),anamqnm(a1q0)
3.{an}成等比数列an1=q(nN,q≠0)an “an≠0”是数列{an}成等比数列的必要非充分条件 4.既是等差又是等比数列的数列:非零常数列. 5.等比中项:G为a与b的等比中项.即G=±6.性质:若m+n=p+q,amanapaq
7.判断等比数列的方法:定义法,中项法,通项公式法
8.等比数列的增减性:当q>1, a1>0或01, a1<0,或0
0时, {an}是递减数列;当q=1时, {an}是常数列;当q<0时, {an}是摆动数列;
二、讲授新课 一:求和公式: G.Pan的首项为a1,公比为q,前n项和Sn.则Sna1a2又ana1qn1
an
ab(a,b同号).Sna1a1qa1q2a1qn1(1)
在(1)式的两边同时乘以q得: qSna1qa1q2a1qn1a1qn(2)
将上面两式相减,即(1)-(2)得:(1q)Sna1a1qn
接下来对q进行分类讨论
1当q1时,Sna1a1a1na1
2当q1时,S11qna1anqna1q1q na1S q=1na1(1qn)q1q1 另外:当q1时,Sa1a1qnn1q =a11qa11qqnAAqn 其中Aa11q
三、例题讲解: 例1:求等比数列1,1,1248, 的前8项和.解:由题知:a1112,q2
11 S212812558 1112562562例2:已知等比数列an中, Sn23na,求首项 解: Sn是等比数列得前n项和.a2
Sn23n2
a1S12324
例3:求和:2232522n3
a1。4
解:此式为首项为2,公比为4的等比数 列的前n+2项的和.S214n2n21234n241 或者:3S222n4n2142322n41
课堂练习: 求和:1qq2qn1
提示:对q进行分类讨论
解:(1)当q0时,S1;(2)当q1时,Sn;
(3)当q0且q1时,S1qn1q;综上: 1qnS1q,q1或S1,q1
四、课后小结: 本节课重点掌握等比数列的前n项和公式: Sa11qnn1a1anqq1q(q1)
及推导方法:错位相减法
1.倒序相加法:将一个数列倒过来排列(倒序),当它与原数列相加时,若有公因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和。如等差数列的求和公式Sna1ann2的推导。
2.错位相减法:这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中an,bn分别是等差数列和等比数列。例1求数列n
23.分组求和法:将一个数列中的项拆成几项,转化成特殊数列求和 n的前n项和Sn
1例2 ann2
n1,求数列an的前n项和Sn
4.公式法:利用已知的求和公式来求积,如等差数列与等比数列的求和公式。再如下面几个重要公式
nn12;(2)135...2n1n 212222(3)246...2nnn1;(4)123...nnn12n1
6(1)123...nnn1(5)132333...n3 22例3求数列1n,2n1,3n2,...n1的和
5.拆项(裂项)相消法 例4 an
例5 an
1,求数列an的前n项和Sn
nn114n21,求数列an的前n项和Sn
常用技巧:(1)
111111(2);nnkknnknknknkn
(3)
1111 nn1n22nn1n1n2111,...,的前n项和Sn 12123123...n6.通项化归法 例6.求数列1,练习:求数列5,55,555,5555,…前n项和Sn
7.奇偶分析项:当数列中的项有符号限制时,应分n为奇数、偶数进行讨论,一般地,先求S2n,再求S2n1,且S2n1S2na2n1 例6若an1
8.利用n14n3,求数列an的前n项和Sn
20n1符号求和:
ai1nia1a2a3an
例7(1)
12n
教学目标
(一)知识与技能目标
数列求和方法.
(二)过程与能力目标
数列求和方法及其获取思路.
教学重点:数列求和方法及其获取思路. 教学难点:数列求和方法及其获取思路.
教学过程
1.倒序相加法:等差数列前n项和公式的推导方法:(1)Sna1a2an2Snn(a1an)
Snanan1a112223210222 例1.求和:2110222923282101分析:数列的第k项与倒数第k项和为1,故宜采用倒序相加法.
小结: 对某些前后具有对称性的数列,可运用倒序相加法求其前n项和.2.错位相减法:等比数列前n项和公式的推导方法:
(2)Sna1a2a3an(1q)Sna1an1 qSaaaa23nn1n23n例2.求和:x3x5x(2n1)x(x0)
3.分组法求和
1的前n项和; 161例4.设正项等比数列an的首项a1,前n项和为Sn,且210S30(2101)S20S100
2例3求数列1,2,3,4(Ⅰ)求an的通项;(Ⅱ)求nSn的前n项和Tn。例5.求数列 1, 1a, 1aa,,1aaa121418,的前n项和Sn.n(n1)解:若a1,则an111n, 于是Sn12n;2 n1a1 若a1,则an1aan1 (1an)1a1a1a1a21an11a(1an)2n于是Sn [n(aaa)][n]
1a1a1a1a1a1a111 1212312n22n14.裂项法求和 例6.求和:12112(),n(n1)nn11111112n Sna1a2an2[(1)()()]2(1)223nn1n1n1解:设数列的通项为an,则an例7.求数列112,1231,,1nn1,的前n项和.解:设annn11n1n
(裂项)
1nn1则 Sn12312
(裂项求和)
=(21)(32)(n1n)
=n11
三、课堂小结:
1.常用数列求和方法有:
(1)公式法: 直接运用等差数列、等比数列求和公式;(2)化归法: 将已知数列的求和问题化为等差数列、等比数列求和问题;(3)倒序相加法: 对前后项有对称性的数列求和;
(4)错位相减法: 对等比数列与等差数列组合数列求和;(5)并项求和法: 将相邻n项合并为一项求和;(6)分部求和法:将一个数列分成n部分求和;
(7)裂项相消法:将数列的通项分解成两项之差,从而在求和时产生相消为零的项的求和方法.四、课外作业: 1.《学案》P62面《单元检测题》 2.思考题
11146前n项的和.481612n2(2).在数列{an}中,an,又bn,求数列{bn}的前n项的和.n1n1n1anan12(1).求数列:(3).在各项均为正数的等比数列中,若a5a69,求log3a1log3a2log3a10的值.解:设Snlog3a1log3a2log3a10
由等比数列的性质 mnpqamanapaq
(找特殊性质项)和对数的运算性质 logaMlogaNlogaMN
得
Sn(log3a1log3a10)(log3a2log3a9)(log3a5log3a6)
(合并求和)
=(log3a1a10)(log3a2a9)(log3a5a6)
=log39log39log39
难点:
①理解等差数列“等差”的特点及通项公式的含义。
②理解等差数列是一种函数模型。
关键:
等差数列概念的理解及由此得到的“性质”的方法。
六、教学过程
教学环节 情境设计和学习任务 学生活动 设计意图 创设情景 在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给,问各得金几何,及未到三人复应得金几何“。
这个问题该怎样解决呢? 倾听 课堂引入 探索研究 由学生观察分析并得出答案:
在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,…
水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5 观察分析,发表各自的意见 引向课题 发现规律 思考:同学们观察一下上面的这两个数列:
0,5,10,15,20,…… ①
18,15.5,13,10.5,8,5.5 ②
看这些数列有什么共同特点呢? 观察分析并得出答案:
引导学生观察相邻两项间的关系,得到:
对于数列①,从第2项起,每一项与前一项的差都等于 5 ;
对于数列②,从第2项起,每一项与前一项的差都等于 -2.5 ;
由学生归纳和概括出,以上两个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。 通过分析,激发学生学习的探究知识的兴趣,引导揭示数列的共性特点。 总结提高 [等差数列的概念]
对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:
等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上两组等差数列,它们的公差依次是5,5,-2.5。 学生认真阅读课本相关概念,找出关键字。 通过学生自己阅读课本,找出关键字,提高学生的阅读水平和思维概括能力,学会抓重点。 提问:如果在 与 中间插入一个数A,使 ,A, 成等差数列数列,那么A应满足什么条件? 由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道:A-a=b-A
所以就有 让学生参与到知识的形成过程中,获得数学学习的成就感。 由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。
不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。
如数列:1,3,5,7,9,11,13…中5是3和7的等差中项,1和9的等差中项。
9是7和11的等差中项,5和13的等差中项。
看来,
从而可得在一等差数列中,若m+n=p+q
则 深入探究,得到更一般化的结论 引领学习更深入的探究,提高学生的学习水平。 总结提高 [等差数列的通项公式]
对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。
【等比数列的概念教案】推荐阅读:
等比数列2教案01-14
等比数列教案及答案05-26
等比数列前n项和教案07-16
等比数列的教学反思06-06
等比数列的性质说课稿12-23
等差数列等比数列复习06-23
等比数列求和练习10-06
等差、等比数列问题12-08
等比数列求和证明03-13
等比数列的前n项和说课稿11-19