立式旋风水膜除尘器

2023-04-14 版权声明 我要投稿

第1篇:立式旋风水膜除尘器

旋风水膜除尘器

旋风水膜除尘器说明:

一、概述:

旋风水膜除尘器是湿式除尘器的一种。主要由蜗形管、喷嘴、进水管组、外圆壳、支座等组成。

二、工作原理:

由除尘器筒体上部的喷嘴沿切线方向将水雾喷向器壁,使壁上形成一层薄的流动水膜。含尘气体由筒体下部以15-22m/s的入口速度切向进入,旋转上升,尘粒靠离心力作用甩向器壁,为水膜所粘附,沿器壁流下,随流水排走。除尘效率随入口气速增大和筒体直径减小而提高。筒体高度对除尘效率影响较大,一般不小于筒体直径 的5倍。气流压力损失为500-750Pa,耗水量为0.1~0.3L/m3,如果参数选择合适,除 尘效率可达90%以上。比干式旋风除尘器高得多。器壁磨损也较干式旋风除尘器轻。

三、使用范围

旋风水膜除尘器适用于温度200℃以下、中等含尘(小于20g/m3)烟气的收尘。

旋风水膜除尘器的主要性能及外形尺寸:

旋风水膜除尘器的主要性能:

注:

1、表中的烟气量和阻力是以烟气密度为1.2kg/m3,断面速度为5m/s时计算的,

一般断面速度为4-6m/s。

2、未考虑进气管和蜗壳时的局部阻力系数为2.5。

3、喷嘴前的水压30kPa。

旋风水膜除尘器的尺寸及质量:

第2篇:卧式旋风水膜除尘器全套CAD图

(一)原理和结构

卧式旋风水膜除尘器的结构见图。它具有横置筒形的外壳和横断面为倒梨形的内芯,在外壳和内芯之间有螺旋导流片,筒体的下部接灰浆斗。

含尘气体由一端沿切线方向进入除尘器,并在外壳、内芯间沿螺旋导流片作螺旋状流动前进,最后从另一端排出。每当含尘气体经一个螺旋圈下适宜的水面时,沿着气流方向把水推向外壳外壁上,使该螺旋圈形成水膜。当含尘气体经各螺旋圈后,除尘器各螺旋圈也就形成了连续的水膜。

卧式旋风水膜除尘器的除尘原理是当含尘气体呈螺旋状前进时,借离心力的作用使位移到外壳的尘粒被水膜粘附。另外,气体每次冲击水面时,也有清洗除尘作用,较细的尘粒为气体多次冲击水面而产生的水滴与泡沫所粘附和凝集而被捕集,或沉入水面,或为离心力甩向器壁后又被水膜除去。因此,卧式旋风水膜除尘器不仅能除去10um以上的尘粒,而且能捕集更细小的尘粒,因而具有较高的除尘效率。卧式水膜除尘器适用于非粘固性及非纤维性粉尘,对具有较细尘粒及高浓度的系统也适用,常用于常温和非腐蚀性的场合。

卧式旋风水膜除尘器之所以有较高的除尘效率,是在于各螺旋圈外壳内壁形成完整的水膜和气体对各圈水面的冲击,以及产生大量的水滴与泡沫。为了达到上面的条件,要求有合理的横断面及各螺旋圈下都具有合适的水位即有合适的通道速度。

合理的横断面是为了使水和微尘粒能充分地接触。为此,断面下部的水击部分应为上大下小的半径,使气体与水面接触能产生较大的离心力,从而对水面产生较大的水击现象。但半径相差过大,含尘气体与水接触时间反而减少,水击产生的水气紊乱情况就会减弱。另外,上下两半径相差过大会造成两侧联接圆弧趋向于直线,不利于在较小的气体速度下水膜的相对稳定,而为形成相对稳定的水膜,势必增加能量,故一般采用倒梨形的横断面。

外壳内壁上的水膜,能使由于离心力而移到外壳内壁的尘粒被粘附。同样,在水膜附近作布朗运动的微尘粒,只要与水膜相接触,也被水膜所粘附,因而避免和减少了被气体再次把粉尘带出。可见水膜能否在内壁上完全地形成,对除尘效率影响很大。水膜如果在内壁上没有被充分形成,使尘粒和水进一步混合,让带水的微尘粒被水膜捕集,必然会使部分粉尘随气体带出。

在除尘器已定的条件下,除尘器内的水位高低是形成水膜的关键。水位过高,水膜厚且强烈,致使压力损失过大;水位过低,水膜形不成。对于一个型号的除尘器,当气量已定时,螺旋通道的气速是固定不变的,随着水位的变化将出现不同的通道高度,则得到相应的平均通道气速。此时水膜形成与否,由此时的平均通道气速而定。

控制某一风量,并以某一供水量连续加入灰浆斗内,使灰浆斗内水位不断提高。在通道高度大于合适的通道商度时,水膜不能形成。随着水位的提高,水位接近合适的通道高度时,水膜即逐渐形成,但不完整。此时以水膜形式排出水量尚小于连续供水量,水位仍在上升。当水位达到合适的通道高度时。即得到了合适的平均通道气速,此时形成了完整的水膜,以水膜形式排出水量同连续供水量相等,水位在通道高度处保持不变。除尘器在合适的平均通道气速下长期运行,这个平衡称为自动平衡。

当气量变小时,在原通道高度下就形不成水膜。此时,灰浆斗只有进水,促使水位上升,通道高度变小。当达到新气量相应的合适通道高度时,水膜形成。待排出水量同连续供水墙相等时,水位在新的气量下达到新的平衡。同样,当气量变大时,也能得到一个新的平衡。因此,它能自动调整合适的通道高度,在使用中适应气量的变化。

当含尘气体速度偏小时,在最不利的横断面顶点处,尘粒和水膜由于离心力小于重力而降落,尘粒不能达到外壳内壁,水膜中断。根据计算分析,为使每一质点,水滴能克服重力对它们的影响而不致降落,并能有足够厚度的水膜(一般为5mm),不同半径R的最小气体速度。

对于一个合理的断面,当采用的气速大于Umin时,一般水膜均能相对稳定形成,水膜呈湍流状态。Re大于2320。

卧式旋风水膜除尘器合适的气量范围和相对应的螺旋通道内平均气速的范围是通过实验得到的。当使用气量减少时,会出现除尘器压力损失上升的现象,这是由于水位自动调整、平衡后,通道高度处的局部压力损失增加所致。因此,卧式旋风水膜除尘器在灰浆斗全隔开方式下有它的合适的气量使用范围,需根据气量与压力损失关系曲线和除尘系统允许除尘器的压力损失值来确定。

图6—29是除尘器压力损失与螺旋通道气速的关系图。图中四条曲线的形状是相似的,只是由于除尘器大小不同、脱水方式不同、除尘器进、出口静压孔的位置不同以及螺距水量比的不同等,引起了各条曲线的上下移动。曲线表明,螺旋通道气速在14~15m/s时,除尘器压力损失最低。降低或提高螺旋通道气速,除尘器压力损失都会增加。

根据这些情况,卧式旋风水膜除尘器的螺旋通道额定气速取14.5m/s,11~16m/s为其使用范围。

合适的螺距水量比,即形成适当水膜的连续供水量与螺旋导流片的螺距的比值是卧式旋风水膜除尘器各圈形成水膜的一个控制手段。螺距水量比太大,不能形成完整水膜,降低了除尘效率,并造成螺旋通道内的干湿交界面产生积尘;太大时,各圈水膜过于强烈,压力损失增大。试验证明以0.5~0.8kg/mm螺距时的螺距水量比较合适。

卧式旋风水膜除尘器的灰斗采用全隔开的灰浆斗。控制连续供水量在连续运行时向第Ⅰ灰浆斗加水,当第Ⅰ灰浆斗水位达到平衡时,第Ⅰ灰浆斗就以水膜形式向第Ⅱ灰浆斗连续供水,以此传递,并在最后的灰浆斗下部以水封形式溢流排出。当除尘器各圈水位平衡时,排出水量与供水量相等。由于连续供水,以水膜形式顺次流到其他灰浆斗,因此各灰浆斗必须保持互不漏水,否则可因灰浆斗内水漏到其他斗内,使水位自动平衡破坏,不能形成水膜而降低除尘效率。

除尘器的净化气体应进行脱水处理,通常用旋风脱水和檐板脱水。旋风脱水是在脱水段设置一插入管,使除尘后的气体在脱水段继续作旋转运动,在离心力作用下,将它所挟带的水甩至外壳内壁,再落到最后一个灰浆斗。脱水后的气体从中心插入管排出。插入管管口的形式如图6—30。III型管口由于有较大的扩散管及连接法兰,对阻挡这部分水进入插入管较有利,且压力损失也小。

管口的插入深度经试验以350mm最为合适。压力损失随插入深度的增加略有增加,但数值不超过5mmH2O。檐板脱水是在脱水段设上下檐式挡水板,利用进入脱水段的气流偏侧的特点,挟水气体先后与上部和下部挡水板相撞,被迫拐弯,利用惯性力使气水分离。水点为挡水板捕集,积成大水滴后流入灰浆斗。气体从最后一圈螺旋通道切向进入空间较大的脱水段后,速度分布还很不均匀。在通道口的对侧速度较大,气体挟水较多,而通道口的同侧,速度较低,甚至形成涡流。气体挟水也较少。因此可把脱水段下部的檐板装在通道口对侧,使其迎着速度较高且挟水较多的气体,以提高脱水效果。如把较大的一块檐板装在下部效果更好。檐式挡水板的结构如图6—31。

在生产中有时会引起气量或供水量突然增加并造成除尘器出口带水。为阻止此时把水带入风机,在除尘器后的水平管道上装设重力泄水管,以保护风机。由气体从除尘器带出的水,在管道内受重力作用而沉于底部缓慢地顺气流方向流动。旋风脱水时带出的水,在插入管内旋转1~2螺距后也同样沉于底部。当管底的水流经泄水管时,几乎全被泄水管脱下而不会进入风机。

(二)系列

卧式旋风水膜除尘器系列,结构形式和设计参数如下:

(1)卧式旋风水膜除尘器系列的设计额定气量为1500~30000m/s,其间分11个型号。额定螺旋通道气速(或进口气速)为14.5m/s,使用气速范围为11~16m/s。

(2)横断面为倒梨形,内芯与外壳直径比为1:3。三个螺旋圈,等螺距、水平安装。全隔开式灰浆斗。

(3)螺旋通道长宽比,即通道宽度与螺距之比为O.7~0.8。

(4)脱水方式分檐板和旋风两种。采用檐板脱水时,其最大出口气速即最大使用气量下气速为3m/s,两檐板间最大气速为4m/s。

(5)7~11型号的除尘器也可采用旋风脱水,其脱水段长度与插入管插入深度比为1:0.645~0.655,其脱水段直径与喇叭口直径比为1:0.745~0.755。

(6)除尘器采用定期排灰浆后换水和连续供水、排水相结合的操作制度,灰浆排放阀宜用快放阀。

(7)在除尘器后的系统管道水平段内,应设置泄水管,以防止系统出口带水

第3篇:水膜除尘、布袋除尘和静电除尘的各自优缺点

水膜除尘器的优点是结构简单,金属耗量小,耗水量小。

水膜除尘器的缺点是高度较大,布置困难,并且在实际运行中发现有带水现象。

袋式除尘器也称过滤式除尘器,优点是:

(1)除尘效率高,一般在99%以上,可达到在除尘器出口处气体的含尘浓度为20~30m3,对亚微米粒径的细尘有较高的分级除尘效率;

(2)结构比较简单,操作维护方便;

(3)在保证相同的除尘效率的前提下,其造价和运行费用低于电除尘器;

(4)对粉尘特性不敏感,不受粉尘比电阻的影响;

(5)在采用玻璃纤维和某些种类的合成纤维来制作滤袋时,可在160~200℃的温度下稳定运行,有选择高性能滤料时,有些耐温可达到260℃;

(6)在用于干法脱硫系统时,可适当提高脱硫效率。

(7)处理气体量的范围大,并可处理非常高浓度的含尘气体,因此它可用作各种含尘气体的除尘器。其容量可小于至每分钟数立方米、大到每分钟数十万立方米的气流,在采用高密度的合成纤维滤袋和脉冲反冲清灰方式时,它能处理粉尘浓度超过700000mg/m3的含尘气体,它既可用于尘源的通风除尘,以及对诸如水泥、碳黑、沥青、石灰、石膏、化肥等各种工艺过程中含尘气体的除尘,以减少粉尘污染物的排放。

袋式除尘器缺点是:

(1)不适于在高温状态下运行工作,当烟气中粉尘含水分重要超过25%以上时,粉尘易粘袋堵袋,造成布袋清灰困难、阻力升高,过早失效损坏;

(2)与电除尘相比阻力损失稍大,一般为1000~2000Pa;

(3)当燃烧高硫烟或烟气未经脱硫等装置处理,烟气了中硫氧化物、氮氧化合物浓度很高时,除FE滤料外,其他化纤合成纤维滤料均会被腐蚀损坏,布袋寿命缩短;

(4)不能在“结露”状态下工作。

静电除尘器也称电除尘器,优点是:

①适用于微粒控制,对粒径1~2μm的尘粒,效率可达98%~99%;

②在电除尘器内,尘粒从气流中分离的能量,不是供给气流,而是直接供给尘粒的,因此,和其它的高效除尘器相比。电除尘器的阻力较低,仅为100-200Pa; ③可以处理高温(在400℃以下)的气体,

④适用于大型的工程,处理的气体量愈大,它的经济效果愈明显。

电除尘器的缺点是:

①设备庞大,占地面积大;

②耗用钢材多,一次投资大;

③结构较复杂,制造、安装的精度要求高;

④对粉尘的比电阻有一定要求。

第4篇:旋风除尘器设计

1.1 除尘器简介

除尘器是把粉尘从烟气中分离出来的设备叫除尘器或除尘设备。除尘器的性能用可处理的气体量、气体通过除尘器时的阻力损失和除尘效率来表达。日常工业上使用的除尘器主要有:重力除尘器、惯性除尘器、电除尘器、湿除尘器、袋式除尘器、旋风除尘器等。

重力除尘器是使含尘气体中的粉尘借助重力作用自然沉降来达到净化气体的装置,它的特点是结构简单,阻力小,但体积大,除尘效率低,设备维修周期长。惯性除尘器是一种利用粉尘在运动中惯性力大于气体惯性力的作用,将粉尘从气体中分离出来的除尘设备,特点是结构简单,阻力较小,但除尘效率低。电除尘器利用含尘气体在通过高压电场电离时,尘粒荷电并受电场力的作用,沉积于电极上,从而使尘粒和气体分离的一种除尘设备,其特点是效率高、阻力低、适用于高温和除去细微粉尘等优点。湿式除尘器是使含尘气体与水或者其他液体相接触,利用水滴和尘粒的惯性膨胀及其他作用而把尘粒从气流中分离出来,特点是投资低、造作简单,占地面积小,能同时进行有害气体的净化、含尘气体的冷却和加湿等优点。袋式除尘器主要依靠编织的或毡织的滤布作为过滤材料达到分离含尘气体中粉尘的目的,特点是适应性比较强,不受粉尘比电阻的影响,也不存在水的污染问题,同时存在过滤速度低、压降大、占地面积大、换袋麻烦等缺点。

1.2除尘器的概念和分类

除尘器是把粉尘从烟气中分离出来 的设备叫做除尘器 或除尘设备。除尘器的性能用可处理的气体量、气体通过除尘器时的阻力损失和除尘效率来表达。同时,除尘器的价格、运行和维护费用、使用寿命长短和操作管理的难易也是考虑其性能的重要因素。除尘器是锅炉及工业生产中常用的设施。在国家采暖通风与空气调节术语标准中,明确了若干除尘器的具体含义,摘抄部分如下:

除尘器:用于捕集、分离悬浮于空气 或气体中粉尘例子粒子的设备,也称收尘器。

沉降室:由于含尘气流进入较大空间速度突然降低,使尘粒在自身重力作用下与气体分离的一种重力除尘装置。也称重力除尘器。

旋风除尘器:含尘 气流沿切线 方向进入筒体做螺旋形旋转运动,在离心作用下将尘粒 分离和捕集的除尘器。

袋式除尘器:用纤维性滤袋捕集粉尘的除尘器。

惯性除尘器:借助各种形式的挡板,迫使气流方向改变,利用尘粒的惯性使其和挡板发生碰撞而将尘粒分离和捕集的除尘器。

除尘器有很多种类,除尘器按其作用原理分成以下五类:

(1)机械力除尘器包括重力除尘器、惯性除尘器、离心除尘器等。

(2)洗涤式除尘器包括水浴式除尘器、泡沫式除尘器,文丘里管除尘器、水膜式除尘器等。

(3)过滤式除尘器包括布袋除尘器和颗粒层除尘器等

(4)静电除尘器;包括管式静电除尘器、板式静电除尘器、湿式静电除尘器。

(5)磁力除尘器。

(6)旋风除尘器。包括:单筒旋风除尘器、多筒旋风除尘器。

(7)除尘器按照除尘方式分为:

(8)干式除尘器。

(9)半干式除尘器。

(10)湿式除尘器。现在工业中用的比较多的是电袋复合式除尘器及袋式除尘器。(fabric filter )

(11)工业气体如果直接排放到大气中,会对环境造成极大的污染与危害,形成酸雨、酸雾等恶劣气候,除尘器已经在国内应用广泛,目前出现的新型除尘器如电力除尘器、纤维粉尘除尘器复合式除尘器等都表现了除尘器还有很大的发展前景。

1.3除尘器的选型依据

(1)根据除尘效率的要求

所选除尘器必须满足排放标准的要求。要注意烟气处理量变化对除尘效率的影响。正常运行时,除尘器的效率高低排序是:袋式除尘器>电除尘器及文丘里除尘器>水膜旋风除尘器>旋风除尘器>惯性除尘器>重力除尘器 (2)根据气体性质

选择除尘器时,必须考虑气体的风量、温度 、成分、湿度等因素。 电除尘器适用于大风量、烟气温度<400C的烟气净化。 袋式除尘器适用于烟气温度<260C的烟气净化,不受烟气量大小的限制,但不宜处理高湿度和含油污的烟气净化。

易燃易爆的气体净化适合于湿式除尘器。 旋风除尘器的处理风量有限。

当需要同时除尘和净化有害气体时,可考虑采用喷淋塔和旋风水膜除尘器。 (3)根据粉尘性质

粉尘性质包括比电阻、粒度、真密度、粘性、憎水性和水硬性、可燃、爆炸性等。

比电阻过大或过小的粉尘不宜采用电除尘器、袋式除尘器不受粉尘比电阻的影响;

粉尘的浓度和粒度对电除尘器的效率影响较为显著,但对袋式除尘器的影响不显著,当气体的含尘浓度较高时(>30kg/),电除尘前宜设置预除尘装置。

袋式除尘器的型式、清灰方式和过滤风速取决于粉尘的性质。 湿式除尘器不适合于净化憎水性和水硬性的粉尘;粉尘的真密度对重力除尘器、惯性除尘器和旋风除尘器的影响显著。 (4)根据压力损失与耗能 (5)根据设备投资和运行费用 (6)节水与防冻的要求 (7)粉尘和气体回收利用的要求

2、旋风除尘器 2.1. 旋风除尘器简介

旋风除尘器是利用旋转的含尘气体产生的惯性离心力,将粉尘从气流中分离出来的一种干式气-固分离装置。其特点是,结构简单,本身无运动部件,不需要特殊的附属设备,占地面积小,操作、维护简便,压力损失中等,运动消耗不大,运转、维护费用低;操作弹性大,性能稳定,不受含尘气体的浓度、温度限制,对于粉尘的物理性质无特殊要求。旋风除尘器可捕集粒径为5um以上的粉尘,允许最高进口含尘质量浓度为100g/m3,最高温度450度,进口气流速度15—25m/s,阻力损失588——1960Pa,除尘效率50%—90%。

旋风除尘器按结构可分为,普通旋风除尘器、异性旋风除尘器、双旋风除尘器、组合式旋风除尘器。按其旋风子数量,可分为单管式和多管式。目前,旋风除尘器广泛应用于化工、石油、冶金、建筑、矿山、机械、轻纺等工业部门。 2.2旋风除尘器的概念及类型

旋风除尘器,含尘气流沿切线方向进入筒体做螺旋形旋转运动,在离心作用下将尘粒分离和捕集的除尘器。

旋风除尘器有了上百年的发展历程,由于不断改进和为了适应各种应用场合出现了很多类型,因而可以根据不同的特点和要求来进行分类。

按照 旋风除尘器的构造,可以分为普通旋风除尘器、异形旋风除尘器、双旋旋风除尘器和组合式旋风除尘器

按照旋风除尘器的效率不同,可以分为通用旋风除尘器(包括普通旋风除尘器和大流量 旋风除尘器)和高效旋风除尘器

按清灰方式可以分为干式和湿式两种。

按进气方式和排灰方式,旋风除尘器可以分为以下四类: 切向进气,周边排灰; 轴向进气,轴向排灰; 轴向进气,轴向排灰; 轴向进气,周边排灰; 2.3旋风除尘器的工作原理和结构

旋风除尘器的除尘机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集与器壁,再借助重力作用使尘粒落入灰斗。

旋风除尘器由筒体、锥体、进气管、排气管和卸灰管等组成。旋风除尘器的工作过程是当含尘气体由切向进气口进入旋风分离器时气流将由直线运动变为圆周运动。旋转气流的绝大部分沿器壁自圆筒体呈螺旋形向下、朝锥体流动,通常称此为外旋气流。含尘气体的旋转过程中产生离心力,将相对密度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去径向惯性力而靠向下的动量和向下的重力沿壁面下落,进入排灰管。 2.4旋风除尘器的特点

旋风除尘器的优点是结构简单,造价便宜,体积小,无运动部件,操作维修方便,压力损失中等,动力消耗不大;缺点是除尘效率不高,对于流量变化大的含尘气体性能较差。

旋风除尘器的选型步骤如下: (1)除尘系统需要处理的气体量。

(2)根据所需处理的气体的含尘质量浓度、粉尘性质及使用条件等初步选择除尘器类型。

(3)根据需要处理的含尘气体量Q,算出除尘器直径。 (4)必要时按给定的条件计算除尘器的 分离界限粒径和预期达到的除尘效率,也可按照有关旋风除尘器性能表选取,或者按照经验数据选取。

(5)除尘器不需选用气密性好的卸灰阀,以防除尘器本体下部漏风,否则效率急剧下降。

(6)旋风除尘器并联使用时,应采用同型号旋风除尘器,并需合理地设计连接风管,使每个除尘器处理的气体量相等,以免除尘器之间产生串联现象,降低效率。 (7)旋风除尘器一般不宜串联使用。

3、中等风量旋风除尘器设计计算

3.1设计参数

处理风量

15909m/h 空气温度

300℃ 粉尘成分

粉尘质量浓度

用途

闪速炉除尘

选型方向

标准CLP/B-12.5X型高风量旋风除尘器 3.2 结构尺寸计算

排气管(内筒)截面积与直径:

SdQv3600Vd3

SiO2

=15909/(3600×20)

=0.221m

Dd(4Sd/)0.52

0.5

=

=(Sd/0.785)

=0.531m 取Dd=530mm (0.088/0.785)圆筒空(环)截面积

SkQv3600Vk(一般空截面上升速度Vk=2.5~4.9m/s)

2

=15909/(3600×3.5)=1.473m 圆筒全截面积

SoSdSk

=0.221+1.473

=1.694m 圆筒直径

Do(S0/0.785)0.52

0.5

=(1.694/0.785)

=1.469m

取Do=1470mm 3.3相关尺寸 (1)圆筒长度

L11502Do150

=2×1470+150

=3090mm (2)锥体长度:

L21002Do100

=2×1470+100

=3040mm (3)进口尺寸:

S1V/3600V1

(一般V1=15~25m/s)

=15909/(3600×16)

=0.2767m=bH

S1

=B.2B

=2B

2

B=(S1/2)0.5

0.5

=(0.276/2)

=0.371m

取B=375mm

H=2B=750mm (4)排灰口直径:

d0.25Do

=0.25×1470=0.367m

取D=370mm 3.4技术性能 (1)处理能力:

Qv3600S1V1

=3600×(0.375×0.750)×16

=16200m/h (2)设备阻力:

P=(V1/2)

23

(=5.0~5.5)

=5×(20×20×1.205/2)

=1205Pa (3)除尘效率: 按经验值取=90% (4)排放浓度:

C2(1)C1

=(1-0.90)×0.116

=0.0116kg/m

3(5)粉尘回收量:

GQv(C1C2)106

=1660kg/h 3.5定型结论

型式:

标准CLP/B-12.5X型高风量旋风除尘器 风量:

阻力:

外形尺寸: 15909m3

/h 1200Pa 1470mm×6130mm

第5篇:旋风除尘器工作原理

旋风式除尘器的组成及内部气流 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5,2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除0.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80,85%的除尘效率。选用耐高温、耐磨蚀和服饰的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000?,压力达500×105Pa的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500,2000Pa。

优点

按照前面轴向速度对流通面积积分的方法,一并计算常规旋风除尘器安装了不同类型减阻杆后下降流量的变化,并将各种情况下不同断面处下降流量占除尘器总处理流量的百分比绘入,为表明上、下行流区过流量的平均值即下降流量与实际上、下地流区过流量差别的大小。可看出各模型的短路流量及下降流量沿除尘器高度的变化。与常规旋风除尘器相比,安装全长减阻杆1#和4#后使短路流量增加但安装非全长减阻杆H1和H2后使短路流量减少。安装1#和4#后下降流量沿流程的变化规律与常规旋风除尘器基本相同,呈线性分布,三条线近科平行下降。但安装H1和H2后,分布呈折线而不是直线,其拐点恰是减阻杆从下向上插入所伸到的断面位置。由此还可以看到,非全长减阻杆使得其伸至断面以上各断面的下降流量增加,下降流量比常规除尘器还大,但接触减阻杆后,下降流量减少很快,至锥体底部达到或低于常规除尘器的量值。

短路流量的减少可提高除尘效率,增大断面的下降流量,又能使含尘空气在除尘器内的停留时间增长,为粉尘创造了更多的分离机会。因此,非全长减阻杆虽然减阻效果不如全长减阻杆,但更有利于提高旋风除尘器的除尘效率。常规旋风除尘器排气芯管入口断面附近存在高达24%的短路流量,这将严重影响整体除尘效果。如何减少这部分短路流量,将是提高效率的一个研究方向。非全长减阻杆减阻效果虽然不如全长减阻杆好,但由于其减小了常规旋风除尘器的短路流量及使断面下降流量增加、使旋风除尘器的除尘效率提高,将更具实际意义。

旋风除尘器是使含尘气流作高速旋转运动,借助离心力的作用将颗粒物从气流中分离并收集下来的除尘装置。进入旋风除尘器的含尘气流沿简体内壁边旋转边下降,同时有少量气体沿径向运动到中心区域中,当旋转气流的大部分到达锥体底部附近时,则开始转为向上运动,中心区域边旋转边上升,最后由出口管排出,同时也存在着离心的径向运动。 通常将旋转向下的外圈气流称为外旋涡,而把锥体底部的区域称为回流区或者混流区。 旋风除尘器烟气中所含颗粒物在旋转运动过程中,在离心力的作用下逐步沉降茁涂尘器的内壁上,并在外旋涡的推动和重力作用下,大部分颗粒物逐渐沿锥体内壁降落到灰斗中。此外,进口气流中的少部分气流沿简体内壁旋转向上,到达上顶端盖后又继续沿出口管外壁旋转下降,最后到达出口管下端附近被上升的气流带走。通常把这部分气流称为上旋涡。随着上旋涡,将有少量细颗粒物被内旋涡向上带走。同样,在混流区内也有少部分细颗粒物被内旋涡向上带起,并被部 分带走。旋风除尘器就是通过上述方式完成颗粒物的捕集的。捕集到的颗粒物位于除尘器底部的灰斗中,从除尘器排出是气体中仍会含有部分细 小颗粒物。 旋风除尘器的形式多。按气流进入的方式不同,可大致分为切向进入和轴向进入两大类。轴向进入式是靠导流叶片促使气流旋转的,因此也叫导流叶片旋转式。轴向进入式又可分为逆流式和直流式。切向进入式又分为直人式和蜗壳式等形式:直人式的入口管外壁与筒体相切;而蜗壳式的入口管内壁与筒体相切。我公司采 用的是切向直入式旋风除尘器。 旋风除尘器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80,160毫米水柱)的净化设备,旋风除尘器在净化设备中应用得最为广泛。

改进型的旋风分离器在部分装置中可以取代尾气过滤设备。

第6篇:旋风除尘器的工作原理

下面介绍具有代表性的机械除尘器—旋风除尘器的工作原理旋风除尘器的基本结构一般由进气口、筒体、锥体、排气管及集尘箱等组成。根据含尘气流人口方式的不同,又可分为切流反转式及轴流式两种。

切流反转式旋风除尘器中含尘气流的运动轨迹。流体从进气管进入旋风筒后,由直线运动变为旋转运动,并在流体压力及筒体内壁形状影响下螺旋下行,朝锥体运动。含尘气体在旋转过程中产生离心力,使重度大于气体的粉尘颗粒克服气流阻力移向边壁。颗粒一旦与器壁接触,便失去惯性力而在重力及旋转流体的带动下贴壁面向下滑落,最后从锥底排灰管排出旋风筒。旋转下降的气流到达锥体端部附近某一位置后,以同样的旋转方向在除尘器中由下折返向上,在下行气流内侧螺旋上行,最终连同一些未被分离的细小颗粒一同排出排气管。流体在旋风筒内的流线类似双螺旋线,通常将外侧螺旋下行的气流称为外旋流,将内侧螺旋上行的气流称为内旋流。

旋风分离器

工作原理:旋风除尘器的工作原理如下图所示,含尘气体从入口导入除尘器的外壳和排气管之间,形成旋转向下的外旋流。悬浮于外旋流的粉尘在离心力的作用下移向器壁,并随外旋流转到除尘器下部,由排尘孔排出。净化后的气体形成上升的内旋流并经过排气管排出。

应用范围及特点:旋风除尘器适用于净化大于5~10微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较低(80~160毫米水柱)的净化设备,旋风除尘器在净化设备中应用得最为广泛。

袋除尘器的原理介绍

作者:佚名 文章来源:不详 点击数:417 更新时间:2008-8-3 图片:

图片: 图片:

图片:

图片:

各种除尘器介绍

从含尘[wiki]气体[/wiki]中分离并捕集粉尘﹑炭粒﹑雾滴的装置。按分离﹑捕集的作用原理﹐可分为机械除尘器﹑洗涤除尘器﹑袋式除尘器﹑声波除尘器﹑静电除尘器。

机械除尘器 利用重力﹑惯性力﹑离心力等机械力将尘粒从气体中分离出来的装置。可分为﹕

重力除尘器 这种除尘器的工作原理是﹕含尘气体通过管道的扩大部分(重力沉降室)﹐流速大大降低﹐较大尘粒即在重力作用下沉降下来。为避免气流旋涡将已沉降尘粒带起﹐常在沉降室加挡板。通过沉降室的气流速度不得大于3米/秒﹐压力损失一般为10~20毫米水柱﹐能捕集粒径大于50[wiki]微米[/wiki]的尘粒。重力除尘器有干式和湿式之分﹐干式除尘效率为40~60%﹐湿式除尘效率为60~80%。重力除尘器适用于含尘气体预净化。为提高除尘效率﹐可降

低沉降室高度或设置多层沉降室。

惯性力除尘器 工作原理是﹕含尘气流冲击在挡板或滤层上﹐气流急转﹐尘粒即在惯性力作用下与气流分离。有碰撞型和回转型两类.惯性力除尘器适用于捕集粒径10微米以上的尘粒﹐因易堵塞﹐对黏结性和纤维性粉尘不适用﹐其压力损失因结构而异﹐一般为30~70毫米水柱。除尘效率为50~70%。

离心力除尘器 它是利用气流在旋涡运动中产生的离心力以清除气流中尘粒的设备。最常用的是旋风除尘器。旋风除尘器工作时气流从上部沿切线方向进入除尘器﹐在其中作旋转运动﹐尘粒在离心力的作用下被拋向除尘器圆筒部分的内壁上降落到集尘室。离心力除尘器于1885年开始使用﹐已发展成多种型式﹐如气流轴向引入﹐灰尘出口轴向配置或周边配置。其特点是结构简单﹐造价低﹐没有运动部件﹐压力损失一般为40~150毫米水柱﹐适用于去除大于5微米的

尘粒。除尘效率约70~90%。

多管式旋风除尘器(简称多管除尘器)是由若干个单管旋风除尘器组合起来的。可将若干个直径较小的旋风除尘器并联起来﹐也可将旋风除尘器串联起来﹐前级用直径较大的旋风除尘器﹐后级用直径小的。并联多管除尘器可制成立式﹑卧式和倾斜式等多种结构。中国定型生产的多管除尘器﹐筒体直径有150和250毫米两种﹐有9管﹑12管和16管等规格。多管除尘器可去除粒径为3微米以上的尘粒﹐压力损失为50~200毫米水柱﹐除尘效率为85~95%。

洗涤除尘器 利用水洗涤含尘气体使气体净化的装置。有下列各种类型﹕

重力喷淋除尘器 又称喷雾塔或洗涤塔。含尘气体通过喷淋液的液滴空间时﹐因尘粒和液滴之间碰撞﹑拦截和凝聚等作用﹐较大尘粒因重力沉降下来﹐与洗涤液一起从塔底排走。为保证塔内气流均匀﹐常用多孔分布板或填料床。重力喷淋除尘器压力损失小于25毫米水柱﹐常用于去除粒径大于50微米的尘粒。这种除尘器具有结构简单﹑阻力小﹑操作方便等特点﹔但耗水多﹐占地面积大﹐效率较低。

旋风洗涤除尘器 这种除尘器捕集粒径小于 5微米的尘粒﹐适用于气量大﹑含尘浓度高的场合。常用的有旋风水膜除尘器﹑旋筒式水膜除尘器和中心喷雾旋风除尘器。旋风水膜除尘器是由除尘器筒体上部的喷嘴沿切线方向将水雾喷向器壁﹐使壁上形成一层薄的流动水膜﹐含尘气体由筒体下层以入口流速约15~22米/秒的速度切向进入﹐旋转上升﹐尘粒靠离心力作用甩向器壁﹐黏附于水膜﹐随水流排出。气流压力损失为50~75毫米水柱﹐除尘效率可达到90~95%。

卧式旋风水膜除尘器 又称鼓式除尘器或旋筒式除尘器。气流进入除尘器后沿螺旋信道作旋转运动﹐在离心力作用下﹐尘粒被甩向筒壁。气流以高速冲击水箱内的水面﹐尘粒便落入水中﹐气流冲击水面激起的水滴和尘粒碰撞﹐也能把尘粒捕获。携带水滴的气流继续作旋转运动﹐水滴被甩向器壁﹐形成水膜﹐把落在壁上的尘粒捕获。气流压力损失为80~

100毫米水柱。

中心喷雾旋风除尘器 中心设喷雾多孔管﹐含尘气流由下部切向引入﹐尘粒被离心力甩向器壁﹐由于水滴同尘粒的碰撞作用和器壁水膜对尘粒的黏附作用而除去尘粒﹐气流压力损失为50~200毫米水柱。适用于小于0.5微米的尘粒﹐

除尘效率为95~98%。

自激喷雾除尘器 依靠气流自身的动能﹐冲击液体表面而激起水滴和水花的除尘器。如冲击水浴式除尘器﹐含尘气流从喷口高速喷入﹐冲击水面后改变方向﹐大颗粒粉尘便被水捕获。气流继续通过水层流动﹐激起大量水花﹑泡沫和雾滴﹐尘粒又被捕获﹐除尘效率可达80~95%。压力损失约为100~150毫米水柱。此外﹐还有按同样工作原理制成的冲激

式和双叶片冲激式除尘机组。

泡沫除尘器 又称泡沫洗涤器﹐或简称泡沫塔。塔中有一块或几块多孔筛板﹐洗涤液流到塔板上﹐保持一定的液层高度﹐含尘气流从塔下部导入﹐均匀穿过塔板上的小孔而分散于液流中﹐同时产生大量泡沫﹐增加了气液两相接触表面积﹐使尘粒被液体捕集。除尘效率主要取决于泡沫层厚度﹐泡沫层厚30毫米时﹐除尘效率为95~99%﹔泡沫层厚120毫米时﹐除尘效率可达99.5%以上。气流压力损失50~80毫米水柱。

射流洗涤除尘器 这种除尘器的工作原理是﹕水在高压(3.5~7千克力/厘米)下注入喷

推荐阅读:

上一篇:总工办职责职能下一篇:高考语言连贯教案

热门文章
    相关推荐